Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000shzz |
Texto Completo: | http://repositorio.ufsm.br/handle/1/22477 |
Resumo: | The diffusion of distributed energy resources (DER) in the electric energy distribution systems in Brazil, outcomes in the perception, through the Electric Sector agents, of a set of benefits that these technologies promote to the Distribution Companies and consumers and DER investors. However, several regulatory and market issues need to be improved to leverage these results. For this purpose, the basic DER definitions of allocation and maximum sizing, are essential, so that these disseminating benefits among stakeholders. The National Electrical Energy Agency (ANEEL) has been improving the national regulatory model over the last few years, to equate the Distributed Generation penetration level in the Brazilian energy matrix. Even with all the efforts made so far, the development of more efficient business models remains limited. These models require improvements that incorporate the technical characteristics of the grids, economic, legal, and environmental aspects, as well as incentive policies that seek the economic and financial balance of those companies. Besides, in this dissertation, it is presented a methodology to be aggregated to the planning for Distribution Companies aiming at evaluating the location, sizing and type of DER using the multiobjective method Strength Pareto Evolutionary Algorithm 2 (SPEA2), through an integration between the computational tools, Matlab and OpenDSS. In this study, multi-objective optimizations are made between technical (Technical Losses, Voltage Variation, Injected Energy), economic (Investment, O&M Cost, Expense with CUSD) and environmental (CO2 Emission) aspects, which will be the basis for defining the best solutions for the agents. Also, the optimizations aim at minimizing the above mentioned Objective Functions (OF), and will be subject to the restrictions of minimum and maximum voltage limits, and analyzed system conductors’ overload. Also, are determined the buses or nodes of the Distribution System with the highest level of service´s critical before the entry of the connection of the Distributed Generation Systems. For these buses, differentiated degrees of incentive will be defined through the Distribution Companies participation in the DER Investor Initial Investment and discount in the distribution system´s tariffs for use (TUSD). Finally, are compared the multi-objective analysis results based on the cost of implementation and operation by the investor, considering the absence of Distribution Companies participation in the DER site and size definition, and later with the involvement of those Companies in this definition, through the mentioned incentives. |
id |
UFSM_8222f9ec67487dc3781576994d8718a3 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/22477 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2Multi-objective optimal planning of distributed energy resources applying the method strength pareto evolutionary algorithm 2Planejamento multiobjetivoRecursos energéticos distribuídosMétodo Strength Pareto Evolutionary Algorithm 2Papel ativo das distribuidoras na geração distribuídaMultiobjective planningDistributed energy resourcesStrength Pareto Evolutionary Algorithm 2 MethodActive role of distribution companies in distributed generationCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe diffusion of distributed energy resources (DER) in the electric energy distribution systems in Brazil, outcomes in the perception, through the Electric Sector agents, of a set of benefits that these technologies promote to the Distribution Companies and consumers and DER investors. However, several regulatory and market issues need to be improved to leverage these results. For this purpose, the basic DER definitions of allocation and maximum sizing, are essential, so that these disseminating benefits among stakeholders. The National Electrical Energy Agency (ANEEL) has been improving the national regulatory model over the last few years, to equate the Distributed Generation penetration level in the Brazilian energy matrix. Even with all the efforts made so far, the development of more efficient business models remains limited. These models require improvements that incorporate the technical characteristics of the grids, economic, legal, and environmental aspects, as well as incentive policies that seek the economic and financial balance of those companies. Besides, in this dissertation, it is presented a methodology to be aggregated to the planning for Distribution Companies aiming at evaluating the location, sizing and type of DER using the multiobjective method Strength Pareto Evolutionary Algorithm 2 (SPEA2), through an integration between the computational tools, Matlab and OpenDSS. In this study, multi-objective optimizations are made between technical (Technical Losses, Voltage Variation, Injected Energy), economic (Investment, O&M Cost, Expense with CUSD) and environmental (CO2 Emission) aspects, which will be the basis for defining the best solutions for the agents. Also, the optimizations aim at minimizing the above mentioned Objective Functions (OF), and will be subject to the restrictions of minimum and maximum voltage limits, and analyzed system conductors’ overload. Also, are determined the buses or nodes of the Distribution System with the highest level of service´s critical before the entry of the connection of the Distributed Generation Systems. For these buses, differentiated degrees of incentive will be defined through the Distribution Companies participation in the DER Investor Initial Investment and discount in the distribution system´s tariffs for use (TUSD). Finally, are compared the multi-objective analysis results based on the cost of implementation and operation by the investor, considering the absence of Distribution Companies participation in the DER site and size definition, and later with the involvement of those Companies in this definition, through the mentioned incentives.Com a maximização da difusão dos recursos energéticos distribuídos (RED) nos sistemas de distribuição de energia elétrica no Brasil, inicia-se a percepção, por meio dos agentes do Setor Elétrico, de um conjunto de benefícios que estas tecnologias promovem às Distribuidoras, aos consumidores e aos investidores. Contudo, uma série de questões regulatórias e de mercado, necessitam ser aprimoradas para a potencialização destes resultados. Para isso, são fundamentais as definições básicas de alocação e dimensionamento máximo que este novo tipo de ativo, como a Geração Distribuída (GD), deverão possuir, para que os referidos benefícios sejam disseminados entre os interessados. A Agência Nacional de Energia Elétrica (ANEEL) vem ao longo dos últimos anos aprimorando o modelo regulatório nacional, com vistas a buscar um melhor equacionamento do resultado da entrada da GD na matriz energética nacional. Mesmo com todos os esforços envidados até este momento, resta limitado o desenvolvimento de modelos de negócios mais eficientes, carecendo de aperfeiçoamento que incorporem características técnicas das redes, aspectos econômicos, legais e ambientais, assim como, políticas de incentivos que busquem o equilíbrio econômico-financeiro das concessões de distribuição de energia. Nesse sentido, nessa dissertação, apresenta-se metodologia a ser agregada ao planejamento para Distribuidoras de Energia com vistas a avaliar a localização, dimensionamento e tipo de RED utilizando o método multiobjetivo Strength Pareto Evolutionary Algorithm 2 (SPEA2), através de uma integração entre as ferramentas computacionais, Matlab e OPENDSS. Neste estudo realizam-se otimizações multiobjetivo entre aspectos técnicos (Perdas Técnicas, Variação de Tensão, Energia Injetada), econômicos (Investimento, Custo O&M, Despesa com CUSD) e ambientais (Emissão CO2), as quais serão a base para definição das melhores soluções para os agentes envolvidos. Além disso, as otimizações objetivam a minimização das Funções Objetivo (FO) supracitadas, e estarão sujeitas às restrições de limites de tensão mínimo e máximo, e sobrecarga dos condutores do sistema analisado. Ainda, determinam-se previamente à entrada da conexão dos Sistemas de Geração Distribuída, as barras do Sistema de Distribuição com maior nível de criticidade ao atendimento, para as quais serão definidos graus de incentivo diferenciados através de participação da Distribuidora no Investimento Inicial do investidor e desconto nas tarifas de uso do sistema de distribuição (TUSD). Por fim, realiza-se a comparação dos resultados das análises multiobjetivo baseados no custo de implantação e operação pelo investidor, considerando a ausência de participação da Distribuidora na definição do local e dimensionamento do RED, e posteriormente com o envolvimento da Concessionária nesta definição, através dos referidos incentivos.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaCanha, Luciane Neveshttp://lattes.cnpq.br/6991878627141193Popov, Vladimir AndreevitchSperandio, MauricioNey, Rafael Crochemore2021-10-20T11:44:58Z2021-10-20T11:44:58Z2020-08-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22477ark:/26339/001300000shzzporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-10-21T06:02:01Zoai:repositorio.ufsm.br:1/22477Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-10-21T06:02:01Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 Multi-objective optimal planning of distributed energy resources applying the method strength pareto evolutionary algorithm 2 |
title |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 |
spellingShingle |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 Ney, Rafael Crochemore Planejamento multiobjetivo Recursos energéticos distribuídos Método Strength Pareto Evolutionary Algorithm 2 Papel ativo das distribuidoras na geração distribuída Multiobjective planning Distributed energy resources Strength Pareto Evolutionary Algorithm 2 Method Active role of distribution companies in distributed generation CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 |
title_full |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 |
title_fullStr |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 |
title_full_unstemmed |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 |
title_sort |
Planejamento multiobjetivo otimizado de recursos energéticos distribuídos aplicando o método strength pareto evolutionary algorithm 2 |
author |
Ney, Rafael Crochemore |
author_facet |
Ney, Rafael Crochemore |
author_role |
author |
dc.contributor.none.fl_str_mv |
Canha, Luciane Neves http://lattes.cnpq.br/6991878627141193 Popov, Vladimir Andreevitch Sperandio, Mauricio |
dc.contributor.author.fl_str_mv |
Ney, Rafael Crochemore |
dc.subject.por.fl_str_mv |
Planejamento multiobjetivo Recursos energéticos distribuídos Método Strength Pareto Evolutionary Algorithm 2 Papel ativo das distribuidoras na geração distribuída Multiobjective planning Distributed energy resources Strength Pareto Evolutionary Algorithm 2 Method Active role of distribution companies in distributed generation CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Planejamento multiobjetivo Recursos energéticos distribuídos Método Strength Pareto Evolutionary Algorithm 2 Papel ativo das distribuidoras na geração distribuída Multiobjective planning Distributed energy resources Strength Pareto Evolutionary Algorithm 2 Method Active role of distribution companies in distributed generation CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
The diffusion of distributed energy resources (DER) in the electric energy distribution systems in Brazil, outcomes in the perception, through the Electric Sector agents, of a set of benefits that these technologies promote to the Distribution Companies and consumers and DER investors. However, several regulatory and market issues need to be improved to leverage these results. For this purpose, the basic DER definitions of allocation and maximum sizing, are essential, so that these disseminating benefits among stakeholders. The National Electrical Energy Agency (ANEEL) has been improving the national regulatory model over the last few years, to equate the Distributed Generation penetration level in the Brazilian energy matrix. Even with all the efforts made so far, the development of more efficient business models remains limited. These models require improvements that incorporate the technical characteristics of the grids, economic, legal, and environmental aspects, as well as incentive policies that seek the economic and financial balance of those companies. Besides, in this dissertation, it is presented a methodology to be aggregated to the planning for Distribution Companies aiming at evaluating the location, sizing and type of DER using the multiobjective method Strength Pareto Evolutionary Algorithm 2 (SPEA2), through an integration between the computational tools, Matlab and OpenDSS. In this study, multi-objective optimizations are made between technical (Technical Losses, Voltage Variation, Injected Energy), economic (Investment, O&M Cost, Expense with CUSD) and environmental (CO2 Emission) aspects, which will be the basis for defining the best solutions for the agents. Also, the optimizations aim at minimizing the above mentioned Objective Functions (OF), and will be subject to the restrictions of minimum and maximum voltage limits, and analyzed system conductors’ overload. Also, are determined the buses or nodes of the Distribution System with the highest level of service´s critical before the entry of the connection of the Distributed Generation Systems. For these buses, differentiated degrees of incentive will be defined through the Distribution Companies participation in the DER Investor Initial Investment and discount in the distribution system´s tariffs for use (TUSD). Finally, are compared the multi-objective analysis results based on the cost of implementation and operation by the investor, considering the absence of Distribution Companies participation in the DER site and size definition, and later with the involvement of those Companies in this definition, through the mentioned incentives. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-07 2021-10-20T11:44:58Z 2021-10-20T11:44:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/22477 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000shzz |
url |
http://repositorio.ufsm.br/handle/1/22477 |
identifier_str_mv |
ark:/26339/001300000shzz |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172390859046912 |