Máquinas de Turing, decidibilidade e computabilidade

Detalhes bibliográficos
Autor(a) principal: Netto, Filipe Ramos
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/00130000091bv
Texto Completo: http://repositorio.ufsm.br/handle/1/32291
Resumo: In this dissertation we look in detail at the mathematical theory of Turing machines, which serve as a tool for study in the fields of Mathematics and Computing. Alongside them, we deal with the types of functions that are usually associated with them, as well as the classifications of languages related to this environment. We take a closer look at several well-known demonstrations, in which we present a view of them at more meticulous levels of description. Using examples of problems and situations, we look at what certain concepts mean and don’t mean. We can check this in our work with the notion of computability, and its non-extension to certain functions, even if they are defined in an elementary and direct way. We present some variants of the Turing machines and also the so-called universal machine. We conclude that these variants are equivalent, as computing models, to the basic version of Turing machines. This allows us to define the notion of algorithm precisely and independently using these resources. We dealt with various problems by coding their instances, many of them in the universe of such machines. Using this method, we reach conclusions about the ability to solve them with the tools in matter, which raise questions, in certain respects, about the existence of a method that universally solves the same problems. And we also see, through the definition of mapping reducibility, that from certain unsolvable (or undecidable) problems, by means of the resources considered, we can deduce the inability to universally find a solution to other problems as well.
id UFSM_ca641c7571580ffc67920d84013ae9b8
oai_identifier_str oai:repositorio.ufsm.br:1/32291
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Máquinas de Turing, decidibilidade e computabilidadeTuring machines, decidability and computabilityMáquina de TuringDecidibilidadeIndecidibilidadeFunção computávelTuring machineDecidabilityUndecidabilityComputabilityCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAIn this dissertation we look in detail at the mathematical theory of Turing machines, which serve as a tool for study in the fields of Mathematics and Computing. Alongside them, we deal with the types of functions that are usually associated with them, as well as the classifications of languages related to this environment. We take a closer look at several well-known demonstrations, in which we present a view of them at more meticulous levels of description. Using examples of problems and situations, we look at what certain concepts mean and don’t mean. We can check this in our work with the notion of computability, and its non-extension to certain functions, even if they are defined in an elementary and direct way. We present some variants of the Turing machines and also the so-called universal machine. We conclude that these variants are equivalent, as computing models, to the basic version of Turing machines. This allows us to define the notion of algorithm precisely and independently using these resources. We dealt with various problems by coding their instances, many of them in the universe of such machines. Using this method, we reach conclusions about the ability to solve them with the tools in matter, which raise questions, in certain respects, about the existence of a method that universally solves the same problems. And we also see, through the definition of mapping reducibility, that from certain unsolvable (or undecidable) problems, by means of the resources considered, we can deduce the inability to universally find a solution to other problems as well.Nessa dissertação consideramos detalhadamente a teoria matemática das máquinas de Turing, que servem como ferramenta de estudo em áreas da Matemática e da Computação. Ao lado delas, lidamos com os tipos de funções que lhe são normalmente associadas, bem como as classificações de linguagens relativas a esse entorno. Trazemos um olhar mais detido a várias demonstrações conhecidas, nas quais expomos uma visão sua em níveis de descrição mais minuciosos. A partir de exemplares de problemas e de situações, verificamos o que significam e o que não significam certos conceitos. Podemos checar isto no trabalho com a noção de computabilidade, e sua não-extensão a certas funções, mesmo que sejam definidas de modo elementar e direto. Apresentamos algumas variantes das máquinas de Turing e também a chamada máquina universal. E concluímos que tais variantes são equivalentes, como modelos de computação, à versão básica das máquinas de Turing. Isto nos permite definir de maneira precisa e independente a noção de algoritmo a partir de tais recursos. Tratamos de diversos problemas a partir de codificações de suas instâncias, muitos deles no próprio universo de tais máquinas. A partir desse método, chegamos a conclusões sobre a capacidade de os resolvermos com as ferramentas em questão, que levantam questões, em certos aspectos, a respeito da existência de um método que universalmente resolva os mesmos problemas. E ainda vemos, através da definição de redutibilidade por mapeamento, que a partir de determinados problemas não-solucionáveis (ou indecidíveis), por meio dos recursos considerados, conseguimos deduzir a incapacidade de encontrar universalmente uma solução para também outros problemas.Universidade Federal de Santa MariaBrasilMatemáticaUFSMPrograma de Pós-Graduação em MatemáticaCentro de Ciências Naturais e Exatasd'Oliveira, Pedro Paiva Zühlkehttp://lattes.cnpq.br/7508611856852819Souza, Leonardo Guerini deSosa, Oscar Francisco MárquezNetto, Filipe Ramos2024-07-12T18:27:23Z2024-07-12T18:27:23Z2024-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32291ark:/26339/00130000091bvporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-07-12T18:27:23Zoai:repositorio.ufsm.br:1/32291Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-29T10:30:27.459518Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Máquinas de Turing, decidibilidade e computabilidade
Turing machines, decidability and computability
title Máquinas de Turing, decidibilidade e computabilidade
spellingShingle Máquinas de Turing, decidibilidade e computabilidade
Netto, Filipe Ramos
Máquina de Turing
Decidibilidade
Indecidibilidade
Função computável
Turing machine
Decidability
Undecidability
Computability
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Máquinas de Turing, decidibilidade e computabilidade
title_full Máquinas de Turing, decidibilidade e computabilidade
title_fullStr Máquinas de Turing, decidibilidade e computabilidade
title_full_unstemmed Máquinas de Turing, decidibilidade e computabilidade
title_sort Máquinas de Turing, decidibilidade e computabilidade
author Netto, Filipe Ramos
author_facet Netto, Filipe Ramos
author_role author
dc.contributor.none.fl_str_mv d'Oliveira, Pedro Paiva Zühlke
http://lattes.cnpq.br/7508611856852819
Souza, Leonardo Guerini de
Sosa, Oscar Francisco Márquez
dc.contributor.author.fl_str_mv Netto, Filipe Ramos
dc.subject.por.fl_str_mv Máquina de Turing
Decidibilidade
Indecidibilidade
Função computável
Turing machine
Decidability
Undecidability
Computability
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic Máquina de Turing
Decidibilidade
Indecidibilidade
Função computável
Turing machine
Decidability
Undecidability
Computability
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this dissertation we look in detail at the mathematical theory of Turing machines, which serve as a tool for study in the fields of Mathematics and Computing. Alongside them, we deal with the types of functions that are usually associated with them, as well as the classifications of languages related to this environment. We take a closer look at several well-known demonstrations, in which we present a view of them at more meticulous levels of description. Using examples of problems and situations, we look at what certain concepts mean and don’t mean. We can check this in our work with the notion of computability, and its non-extension to certain functions, even if they are defined in an elementary and direct way. We present some variants of the Turing machines and also the so-called universal machine. We conclude that these variants are equivalent, as computing models, to the basic version of Turing machines. This allows us to define the notion of algorithm precisely and independently using these resources. We dealt with various problems by coding their instances, many of them in the universe of such machines. Using this method, we reach conclusions about the ability to solve them with the tools in matter, which raise questions, in certain respects, about the existence of a method that universally solves the same problems. And we also see, through the definition of mapping reducibility, that from certain unsolvable (or undecidable) problems, by means of the resources considered, we can deduce the inability to universally find a solution to other problems as well.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-12T18:27:23Z
2024-07-12T18:27:23Z
2024-02-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/32291
dc.identifier.dark.fl_str_mv ark:/26339/00130000091bv
url http://repositorio.ufsm.br/handle/1/32291
identifier_str_mv ark:/26339/00130000091bv
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Matemática
UFSM
Programa de Pós-Graduação em Matemática
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Matemática
UFSM
Programa de Pós-Graduação em Matemática
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1814439755911266304