Máquinas de Turing, decidibilidade e computabilidade
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000h2k3 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/32291 |
Resumo: | In this dissertation we look in detail at the mathematical theory of Turing machines, which serve as a tool for study in the fields of Mathematics and Computing. Alongside them, we deal with the types of functions that are usually associated with them, as well as the classifications of languages related to this environment. We take a closer look at several well-known demonstrations, in which we present a view of them at more meticulous levels of description. Using examples of problems and situations, we look at what certain concepts mean and don’t mean. We can check this in our work with the notion of computability, and its non-extension to certain functions, even if they are defined in an elementary and direct way. We present some variants of the Turing machines and also the so-called universal machine. We conclude that these variants are equivalent, as computing models, to the basic version of Turing machines. This allows us to define the notion of algorithm precisely and independently using these resources. We dealt with various problems by coding their instances, many of them in the universe of such machines. Using this method, we reach conclusions about the ability to solve them with the tools in matter, which raise questions, in certain respects, about the existence of a method that universally solves the same problems. And we also see, through the definition of mapping reducibility, that from certain unsolvable (or undecidable) problems, by means of the resources considered, we can deduce the inability to universally find a solution to other problems as well. |
id |
UFSM_ca641c7571580ffc67920d84013ae9b8 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/32291 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Máquinas de Turing, decidibilidade e computabilidadeTuring machines, decidability and computabilityMáquina de TuringDecidibilidadeIndecidibilidadeFunção computávelTuring machineDecidabilityUndecidabilityComputabilityCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAIn this dissertation we look in detail at the mathematical theory of Turing machines, which serve as a tool for study in the fields of Mathematics and Computing. Alongside them, we deal with the types of functions that are usually associated with them, as well as the classifications of languages related to this environment. We take a closer look at several well-known demonstrations, in which we present a view of them at more meticulous levels of description. Using examples of problems and situations, we look at what certain concepts mean and don’t mean. We can check this in our work with the notion of computability, and its non-extension to certain functions, even if they are defined in an elementary and direct way. We present some variants of the Turing machines and also the so-called universal machine. We conclude that these variants are equivalent, as computing models, to the basic version of Turing machines. This allows us to define the notion of algorithm precisely and independently using these resources. We dealt with various problems by coding their instances, many of them in the universe of such machines. Using this method, we reach conclusions about the ability to solve them with the tools in matter, which raise questions, in certain respects, about the existence of a method that universally solves the same problems. And we also see, through the definition of mapping reducibility, that from certain unsolvable (or undecidable) problems, by means of the resources considered, we can deduce the inability to universally find a solution to other problems as well.Nessa dissertação consideramos detalhadamente a teoria matemática das máquinas de Turing, que servem como ferramenta de estudo em áreas da Matemática e da Computação. Ao lado delas, lidamos com os tipos de funções que lhe são normalmente associadas, bem como as classificações de linguagens relativas a esse entorno. Trazemos um olhar mais detido a várias demonstrações conhecidas, nas quais expomos uma visão sua em níveis de descrição mais minuciosos. A partir de exemplares de problemas e de situações, verificamos o que significam e o que não significam certos conceitos. Podemos checar isto no trabalho com a noção de computabilidade, e sua não-extensão a certas funções, mesmo que sejam definidas de modo elementar e direto. Apresentamos algumas variantes das máquinas de Turing e também a chamada máquina universal. E concluímos que tais variantes são equivalentes, como modelos de computação, à versão básica das máquinas de Turing. Isto nos permite definir de maneira precisa e independente a noção de algoritmo a partir de tais recursos. Tratamos de diversos problemas a partir de codificações de suas instâncias, muitos deles no próprio universo de tais máquinas. A partir desse método, chegamos a conclusões sobre a capacidade de os resolvermos com as ferramentas em questão, que levantam questões, em certos aspectos, a respeito da existência de um método que universalmente resolva os mesmos problemas. E ainda vemos, através da definição de redutibilidade por mapeamento, que a partir de determinados problemas não-solucionáveis (ou indecidíveis), por meio dos recursos considerados, conseguimos deduzir a incapacidade de encontrar universalmente uma solução para também outros problemas.Universidade Federal de Santa MariaBrasilMatemáticaUFSMPrograma de Pós-Graduação em MatemáticaCentro de Ciências Naturais e Exatasd'Oliveira, Pedro Paiva Zühlkehttp://lattes.cnpq.br/7508611856852819Souza, Leonardo Guerini deSosa, Oscar Francisco MárquezNetto, Filipe Ramos2024-07-12T18:27:23Z2024-07-12T18:27:23Z2024-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32291ark:/26339/001300000h2k3porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-07-12T18:27:23Zoai:repositorio.ufsm.br:1/32291Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-12T18:27:23Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Máquinas de Turing, decidibilidade e computabilidade Turing machines, decidability and computability |
title |
Máquinas de Turing, decidibilidade e computabilidade |
spellingShingle |
Máquinas de Turing, decidibilidade e computabilidade Netto, Filipe Ramos Máquina de Turing Decidibilidade Indecidibilidade Função computável Turing machine Decidability Undecidability Computability CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Máquinas de Turing, decidibilidade e computabilidade |
title_full |
Máquinas de Turing, decidibilidade e computabilidade |
title_fullStr |
Máquinas de Turing, decidibilidade e computabilidade |
title_full_unstemmed |
Máquinas de Turing, decidibilidade e computabilidade |
title_sort |
Máquinas de Turing, decidibilidade e computabilidade |
author |
Netto, Filipe Ramos |
author_facet |
Netto, Filipe Ramos |
author_role |
author |
dc.contributor.none.fl_str_mv |
d'Oliveira, Pedro Paiva Zühlke http://lattes.cnpq.br/7508611856852819 Souza, Leonardo Guerini de Sosa, Oscar Francisco Márquez |
dc.contributor.author.fl_str_mv |
Netto, Filipe Ramos |
dc.subject.por.fl_str_mv |
Máquina de Turing Decidibilidade Indecidibilidade Função computável Turing machine Decidability Undecidability Computability CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
Máquina de Turing Decidibilidade Indecidibilidade Função computável Turing machine Decidability Undecidability Computability CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this dissertation we look in detail at the mathematical theory of Turing machines, which serve as a tool for study in the fields of Mathematics and Computing. Alongside them, we deal with the types of functions that are usually associated with them, as well as the classifications of languages related to this environment. We take a closer look at several well-known demonstrations, in which we present a view of them at more meticulous levels of description. Using examples of problems and situations, we look at what certain concepts mean and don’t mean. We can check this in our work with the notion of computability, and its non-extension to certain functions, even if they are defined in an elementary and direct way. We present some variants of the Turing machines and also the so-called universal machine. We conclude that these variants are equivalent, as computing models, to the basic version of Turing machines. This allows us to define the notion of algorithm precisely and independently using these resources. We dealt with various problems by coding their instances, many of them in the universe of such machines. Using this method, we reach conclusions about the ability to solve them with the tools in matter, which raise questions, in certain respects, about the existence of a method that universally solves the same problems. And we also see, through the definition of mapping reducibility, that from certain unsolvable (or undecidable) problems, by means of the resources considered, we can deduce the inability to universally find a solution to other problems as well. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-12T18:27:23Z 2024-07-12T18:27:23Z 2024-02-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/32291 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000h2k3 |
url |
http://repositorio.ufsm.br/handle/1/32291 |
identifier_str_mv |
ark:/26339/001300000h2k3 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1821325932903792640 |