Mineração de dados para análise de desempenho de alunos do Ensino Fundamental

Detalhes bibliográficos
Autor(a) principal: Paula, Alexandre Abreu de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000011bdg
Texto Completo: http://repositorio.ufsm.br/handle/1/29311
Resumo: Nowadays, the challenge for the field of social policies is to improve the quality of basic education, and the Basic Education Development Index (Ideb) is the measure used to measure the performance of the Brazilian educational system. To face this challenge, Information and Communication Technologies (ICT) have proven to be a useful platform to support the learning process, generating large amounts of data. In state schools in Rio Grande do Sul, the Education Department's (ISE) computerization system is a tool that stores student information and generates data that can be used to discover new knowledge. The objective of this research is to generate a prediction model that allows identifying students with the potential to fail, so that the school can outline more focused actions for these students, enabling managers and teachers to apply solutions to improve student performance. The development of the work took place in three stages, with a deductive, qualitative and quantitative research method, which included a bibliographical research on the guiding theme and had as research universe 6th and 9th grade students from 2016 to 2019. At this stage, a study was carried out on the functioning of IDEB, the use of Data Mining techniques in Education (MDE) and the process of discovering knowledge in databases (KDD). In the second stage, stages of the KDD process were explored, applying data mining (DM) techniques and algorithms to identify attributes related to the low performance of 6th and 9th grade students. In the third stage, the data were evaluated and a web system was built to predict students. The results indicated that, in mining the 6th grade students' experiment, the greatest difficulty was found in the mathematics discipline, which is in line with the results obtained in IDEB. In the experiment with 9th grade students, the subject with the greatest difficulty was science. In both experiments, the pattern found by the algorithm as the root node was the 2nd quarter grade in math for the 6th grade and science for the 9th grade, allowing managers to take the necessary action to help students who might fail.
id UFSM_d3d8971b82482dd4316750609cf775c0
oai_identifier_str oai:repositorio.ufsm.br:1/29311
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Mineração de dados para análise de desempenho de alunos do Ensino FundamentalData mining for performance analysis of elementary school studentsAvaliação da Educação Básica no BrasilMineração de dados educacionaisDescoberta de conhecimento em bases de dadosEvaluation of Basic Education in BrazilEducational data miningDiscovery of knowledge in databasesCNPQ::CIENCIAS HUMANAS::EDUCACAONowadays, the challenge for the field of social policies is to improve the quality of basic education, and the Basic Education Development Index (Ideb) is the measure used to measure the performance of the Brazilian educational system. To face this challenge, Information and Communication Technologies (ICT) have proven to be a useful platform to support the learning process, generating large amounts of data. In state schools in Rio Grande do Sul, the Education Department's (ISE) computerization system is a tool that stores student information and generates data that can be used to discover new knowledge. The objective of this research is to generate a prediction model that allows identifying students with the potential to fail, so that the school can outline more focused actions for these students, enabling managers and teachers to apply solutions to improve student performance. The development of the work took place in three stages, with a deductive, qualitative and quantitative research method, which included a bibliographical research on the guiding theme and had as research universe 6th and 9th grade students from 2016 to 2019. At this stage, a study was carried out on the functioning of IDEB, the use of Data Mining techniques in Education (MDE) and the process of discovering knowledge in databases (KDD). In the second stage, stages of the KDD process were explored, applying data mining (DM) techniques and algorithms to identify attributes related to the low performance of 6th and 9th grade students. In the third stage, the data were evaluated and a web system was built to predict students. The results indicated that, in mining the 6th grade students' experiment, the greatest difficulty was found in the mathematics discipline, which is in line with the results obtained in IDEB. In the experiment with 9th grade students, the subject with the greatest difficulty was science. In both experiments, the pattern found by the algorithm as the root node was the 2nd quarter grade in math for the 6th grade and science for the 9th grade, allowing managers to take the necessary action to help students who might fail.Nos dias atuais, o desafio para o campo das políticas sociais é melhorar a qualidade da Educação Básica, e o Índice de Desenvolvimento da Educação Básica (IDEB) é a medida utilizada para mensurar o desempenho do Sistema Educacional Brasileiro. Para enfrentar esse desafio, as Tecnologias de Informação e Comunicação (TIC) têm se mostrado uma plataforma útil de apoio ao processo de aprendizagem, gerando grandes quantidades de dados. Nas escolas estaduais do Rio Grande do Sul, o sistema de Informatização da Secretaria da Educação (ISE) é uma ferramenta que armazena informações dos alunos e gera dados que podem ser usados para a descoberta de novos conhecimentos. O objetivo desta pesquisa é gerar um modelo de predição que permita identificar alunos com potencial de reprovação, de forma que a escola possa traçar ações mais focadas para esses estudantes, possibilitando aos gestores e professores aplicar soluções para melhorar o desempenho dos alunos. O desenvolvimento do trabalho ocorreu em três etapas, com um método de investigação dedutivo, quali-quantitativo, que incluiu uma pesquisa bibliográfica acerca do tema norteador e teve como universo de pesquisa alunos do 6º e 9º ano dos anos de 2016 a 2019. Na primeira etapa, foi realizado um estudo sobre o funcionamento do IDEB, a utilização de técnicas de Mineração de Dados na Educação (MDE) e o processo de descoberta de Conhecimento em Bases de Dados (KDD). Na segunda etapa, foram exploradas etapas do processo de KDD aplicando técnicas e algoritmos de mineração de dados (MD) para a identificação de atributos relacionados ao baixo desempenho dos alunos do 6º e 9º ano. Na terceira etapa, foram avaliados os dados e construído um sistema web para a predição de alunos. Os resultados indicaram que, na mineração do experimento dos alunos dos 6º anos, a maior dificuldade encontrada foi na disciplina de matemática, o que está em consonância com os resultados obtidos no IDEB. Já no experimento dos alunos do 9º ano, a disciplina com maior dificuldade foi ciências. Em ambos os experimentos, o padrão encontrado pelo algoritmo como nó raiz foi a nota do 2º trimestre em matemática para o 6º ano e ciências para o 9º, possibilitando aos gestores uma ação necessária para auxiliar alunos que possam ser reprovados.Universidade Federal de Santa MariaBrasilEducaçãoUFSMPrograma de Pós-Graduação em Tecnologias Educacionais em RedeCentro de EducaçãoPertile, Solange de Lurdeshttp://lattes.cnpq.br/5597581688504821Moreira Junior, Fernando de JesusPereira, Adriana SoaresManica, EdimarPaula, Alexandre Abreu de2023-06-05T19:56:36Z2023-06-05T19:56:36Z2022-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/29311ark:/26339/0013000011bdgporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-06-05T19:56:36Zoai:repositorio.ufsm.br:1/29311Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-06-05T19:56:36Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
Data mining for performance analysis of elementary school students
title Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
spellingShingle Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
Paula, Alexandre Abreu de
Avaliação da Educação Básica no Brasil
Mineração de dados educacionais
Descoberta de conhecimento em bases de dados
Evaluation of Basic Education in Brazil
Educational data mining
Discovery of knowledge in databases
CNPQ::CIENCIAS HUMANAS::EDUCACAO
title_short Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
title_full Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
title_fullStr Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
title_full_unstemmed Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
title_sort Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
author Paula, Alexandre Abreu de
author_facet Paula, Alexandre Abreu de
author_role author
dc.contributor.none.fl_str_mv Pertile, Solange de Lurdes
http://lattes.cnpq.br/5597581688504821
Moreira Junior, Fernando de Jesus
Pereira, Adriana Soares
Manica, Edimar
dc.contributor.author.fl_str_mv Paula, Alexandre Abreu de
dc.subject.por.fl_str_mv Avaliação da Educação Básica no Brasil
Mineração de dados educacionais
Descoberta de conhecimento em bases de dados
Evaluation of Basic Education in Brazil
Educational data mining
Discovery of knowledge in databases
CNPQ::CIENCIAS HUMANAS::EDUCACAO
topic Avaliação da Educação Básica no Brasil
Mineração de dados educacionais
Descoberta de conhecimento em bases de dados
Evaluation of Basic Education in Brazil
Educational data mining
Discovery of knowledge in databases
CNPQ::CIENCIAS HUMANAS::EDUCACAO
description Nowadays, the challenge for the field of social policies is to improve the quality of basic education, and the Basic Education Development Index (Ideb) is the measure used to measure the performance of the Brazilian educational system. To face this challenge, Information and Communication Technologies (ICT) have proven to be a useful platform to support the learning process, generating large amounts of data. In state schools in Rio Grande do Sul, the Education Department's (ISE) computerization system is a tool that stores student information and generates data that can be used to discover new knowledge. The objective of this research is to generate a prediction model that allows identifying students with the potential to fail, so that the school can outline more focused actions for these students, enabling managers and teachers to apply solutions to improve student performance. The development of the work took place in three stages, with a deductive, qualitative and quantitative research method, which included a bibliographical research on the guiding theme and had as research universe 6th and 9th grade students from 2016 to 2019. At this stage, a study was carried out on the functioning of IDEB, the use of Data Mining techniques in Education (MDE) and the process of discovering knowledge in databases (KDD). In the second stage, stages of the KDD process were explored, applying data mining (DM) techniques and algorithms to identify attributes related to the low performance of 6th and 9th grade students. In the third stage, the data were evaluated and a web system was built to predict students. The results indicated that, in mining the 6th grade students' experiment, the greatest difficulty was found in the mathematics discipline, which is in line with the results obtained in IDEB. In the experiment with 9th grade students, the subject with the greatest difficulty was science. In both experiments, the pattern found by the algorithm as the root node was the 2nd quarter grade in math for the 6th grade and science for the 9th grade, allowing managers to take the necessary action to help students who might fail.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-30
2023-06-05T19:56:36Z
2023-06-05T19:56:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/29311
dc.identifier.dark.fl_str_mv ark:/26339/0013000011bdg
url http://repositorio.ufsm.br/handle/1/29311
identifier_str_mv ark:/26339/0013000011bdg
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Educação
UFSM
Programa de Pós-Graduação em Tecnologias Educacionais em Rede
Centro de Educação
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Educação
UFSM
Programa de Pós-Graduação em Tecnologias Educacionais em Rede
Centro de Educação
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172429245317120