Mineração de dados para análise de desempenho de alunos do Ensino Fundamental
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000011bdg |
Texto Completo: | http://repositorio.ufsm.br/handle/1/29311 |
Resumo: | Nowadays, the challenge for the field of social policies is to improve the quality of basic education, and the Basic Education Development Index (Ideb) is the measure used to measure the performance of the Brazilian educational system. To face this challenge, Information and Communication Technologies (ICT) have proven to be a useful platform to support the learning process, generating large amounts of data. In state schools in Rio Grande do Sul, the Education Department's (ISE) computerization system is a tool that stores student information and generates data that can be used to discover new knowledge. The objective of this research is to generate a prediction model that allows identifying students with the potential to fail, so that the school can outline more focused actions for these students, enabling managers and teachers to apply solutions to improve student performance. The development of the work took place in three stages, with a deductive, qualitative and quantitative research method, which included a bibliographical research on the guiding theme and had as research universe 6th and 9th grade students from 2016 to 2019. At this stage, a study was carried out on the functioning of IDEB, the use of Data Mining techniques in Education (MDE) and the process of discovering knowledge in databases (KDD). In the second stage, stages of the KDD process were explored, applying data mining (DM) techniques and algorithms to identify attributes related to the low performance of 6th and 9th grade students. In the third stage, the data were evaluated and a web system was built to predict students. The results indicated that, in mining the 6th grade students' experiment, the greatest difficulty was found in the mathematics discipline, which is in line with the results obtained in IDEB. In the experiment with 9th grade students, the subject with the greatest difficulty was science. In both experiments, the pattern found by the algorithm as the root node was the 2nd quarter grade in math for the 6th grade and science for the 9th grade, allowing managers to take the necessary action to help students who might fail. |
id |
UFSM_d3d8971b82482dd4316750609cf775c0 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/29311 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Mineração de dados para análise de desempenho de alunos do Ensino FundamentalData mining for performance analysis of elementary school studentsAvaliação da Educação Básica no BrasilMineração de dados educacionaisDescoberta de conhecimento em bases de dadosEvaluation of Basic Education in BrazilEducational data miningDiscovery of knowledge in databasesCNPQ::CIENCIAS HUMANAS::EDUCACAONowadays, the challenge for the field of social policies is to improve the quality of basic education, and the Basic Education Development Index (Ideb) is the measure used to measure the performance of the Brazilian educational system. To face this challenge, Information and Communication Technologies (ICT) have proven to be a useful platform to support the learning process, generating large amounts of data. In state schools in Rio Grande do Sul, the Education Department's (ISE) computerization system is a tool that stores student information and generates data that can be used to discover new knowledge. The objective of this research is to generate a prediction model that allows identifying students with the potential to fail, so that the school can outline more focused actions for these students, enabling managers and teachers to apply solutions to improve student performance. The development of the work took place in three stages, with a deductive, qualitative and quantitative research method, which included a bibliographical research on the guiding theme and had as research universe 6th and 9th grade students from 2016 to 2019. At this stage, a study was carried out on the functioning of IDEB, the use of Data Mining techniques in Education (MDE) and the process of discovering knowledge in databases (KDD). In the second stage, stages of the KDD process were explored, applying data mining (DM) techniques and algorithms to identify attributes related to the low performance of 6th and 9th grade students. In the third stage, the data were evaluated and a web system was built to predict students. The results indicated that, in mining the 6th grade students' experiment, the greatest difficulty was found in the mathematics discipline, which is in line with the results obtained in IDEB. In the experiment with 9th grade students, the subject with the greatest difficulty was science. In both experiments, the pattern found by the algorithm as the root node was the 2nd quarter grade in math for the 6th grade and science for the 9th grade, allowing managers to take the necessary action to help students who might fail.Nos dias atuais, o desafio para o campo das políticas sociais é melhorar a qualidade da Educação Básica, e o Índice de Desenvolvimento da Educação Básica (IDEB) é a medida utilizada para mensurar o desempenho do Sistema Educacional Brasileiro. Para enfrentar esse desafio, as Tecnologias de Informação e Comunicação (TIC) têm se mostrado uma plataforma útil de apoio ao processo de aprendizagem, gerando grandes quantidades de dados. Nas escolas estaduais do Rio Grande do Sul, o sistema de Informatização da Secretaria da Educação (ISE) é uma ferramenta que armazena informações dos alunos e gera dados que podem ser usados para a descoberta de novos conhecimentos. O objetivo desta pesquisa é gerar um modelo de predição que permita identificar alunos com potencial de reprovação, de forma que a escola possa traçar ações mais focadas para esses estudantes, possibilitando aos gestores e professores aplicar soluções para melhorar o desempenho dos alunos. O desenvolvimento do trabalho ocorreu em três etapas, com um método de investigação dedutivo, quali-quantitativo, que incluiu uma pesquisa bibliográfica acerca do tema norteador e teve como universo de pesquisa alunos do 6º e 9º ano dos anos de 2016 a 2019. Na primeira etapa, foi realizado um estudo sobre o funcionamento do IDEB, a utilização de técnicas de Mineração de Dados na Educação (MDE) e o processo de descoberta de Conhecimento em Bases de Dados (KDD). Na segunda etapa, foram exploradas etapas do processo de KDD aplicando técnicas e algoritmos de mineração de dados (MD) para a identificação de atributos relacionados ao baixo desempenho dos alunos do 6º e 9º ano. Na terceira etapa, foram avaliados os dados e construído um sistema web para a predição de alunos. Os resultados indicaram que, na mineração do experimento dos alunos dos 6º anos, a maior dificuldade encontrada foi na disciplina de matemática, o que está em consonância com os resultados obtidos no IDEB. Já no experimento dos alunos do 9º ano, a disciplina com maior dificuldade foi ciências. Em ambos os experimentos, o padrão encontrado pelo algoritmo como nó raiz foi a nota do 2º trimestre em matemática para o 6º ano e ciências para o 9º, possibilitando aos gestores uma ação necessária para auxiliar alunos que possam ser reprovados.Universidade Federal de Santa MariaBrasilEducaçãoUFSMPrograma de Pós-Graduação em Tecnologias Educacionais em RedeCentro de EducaçãoPertile, Solange de Lurdeshttp://lattes.cnpq.br/5597581688504821Moreira Junior, Fernando de JesusPereira, Adriana SoaresManica, EdimarPaula, Alexandre Abreu de2023-06-05T19:56:36Z2023-06-05T19:56:36Z2022-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/29311ark:/26339/0013000011bdgporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-06-05T19:56:36Zoai:repositorio.ufsm.br:1/29311Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-06-05T19:56:36Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental Data mining for performance analysis of elementary school students |
title |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental |
spellingShingle |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental Paula, Alexandre Abreu de Avaliação da Educação Básica no Brasil Mineração de dados educacionais Descoberta de conhecimento em bases de dados Evaluation of Basic Education in Brazil Educational data mining Discovery of knowledge in databases CNPQ::CIENCIAS HUMANAS::EDUCACAO |
title_short |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental |
title_full |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental |
title_fullStr |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental |
title_full_unstemmed |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental |
title_sort |
Mineração de dados para análise de desempenho de alunos do Ensino Fundamental |
author |
Paula, Alexandre Abreu de |
author_facet |
Paula, Alexandre Abreu de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pertile, Solange de Lurdes http://lattes.cnpq.br/5597581688504821 Moreira Junior, Fernando de Jesus Pereira, Adriana Soares Manica, Edimar |
dc.contributor.author.fl_str_mv |
Paula, Alexandre Abreu de |
dc.subject.por.fl_str_mv |
Avaliação da Educação Básica no Brasil Mineração de dados educacionais Descoberta de conhecimento em bases de dados Evaluation of Basic Education in Brazil Educational data mining Discovery of knowledge in databases CNPQ::CIENCIAS HUMANAS::EDUCACAO |
topic |
Avaliação da Educação Básica no Brasil Mineração de dados educacionais Descoberta de conhecimento em bases de dados Evaluation of Basic Education in Brazil Educational data mining Discovery of knowledge in databases CNPQ::CIENCIAS HUMANAS::EDUCACAO |
description |
Nowadays, the challenge for the field of social policies is to improve the quality of basic education, and the Basic Education Development Index (Ideb) is the measure used to measure the performance of the Brazilian educational system. To face this challenge, Information and Communication Technologies (ICT) have proven to be a useful platform to support the learning process, generating large amounts of data. In state schools in Rio Grande do Sul, the Education Department's (ISE) computerization system is a tool that stores student information and generates data that can be used to discover new knowledge. The objective of this research is to generate a prediction model that allows identifying students with the potential to fail, so that the school can outline more focused actions for these students, enabling managers and teachers to apply solutions to improve student performance. The development of the work took place in three stages, with a deductive, qualitative and quantitative research method, which included a bibliographical research on the guiding theme and had as research universe 6th and 9th grade students from 2016 to 2019. At this stage, a study was carried out on the functioning of IDEB, the use of Data Mining techniques in Education (MDE) and the process of discovering knowledge in databases (KDD). In the second stage, stages of the KDD process were explored, applying data mining (DM) techniques and algorithms to identify attributes related to the low performance of 6th and 9th grade students. In the third stage, the data were evaluated and a web system was built to predict students. The results indicated that, in mining the 6th grade students' experiment, the greatest difficulty was found in the mathematics discipline, which is in line with the results obtained in IDEB. In the experiment with 9th grade students, the subject with the greatest difficulty was science. In both experiments, the pattern found by the algorithm as the root node was the 2nd quarter grade in math for the 6th grade and science for the 9th grade, allowing managers to take the necessary action to help students who might fail. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-30 2023-06-05T19:56:36Z 2023-06-05T19:56:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/29311 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000011bdg |
url |
http://repositorio.ufsm.br/handle/1/29311 |
identifier_str_mv |
ark:/26339/0013000011bdg |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Educação UFSM Programa de Pós-Graduação em Tecnologias Educacionais em Rede Centro de Educação |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Educação UFSM Programa de Pós-Graduação em Tecnologias Educacionais em Rede Centro de Educação |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172429245317120 |