Coexistência de supercondutividade e charge density wave em um regime correlacionado

Detalhes bibliográficos
Autor(a) principal: Prauchner, Leonardo Costa
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/22500
Resumo: The strongly correlated electron systems raise the interest of researchers from different areas. However, one of the main categories of those are the unconventional superconductors, also known as high-Tc superconductors. Characterized by a critical temperature above 32 K, predicted by the BCS theory, those systems generally show typical strongly correlated systems behaviors, such as in cuprates. This category of systems have a rich phase diagram, with many phases and coexistence regimes. The case of cuprates is an example where both charge density wave and superconductivity coexist, while also showing the antiferromagnetic and spin density wave phases. There exists a consensus that the mechanisms that generate the superconductivity on systems like cuprates are directly associated to the other, neighbouring phases to the superconductivity. Thanks to that, studying those phases and their coexistence is of utmost importance to the understanding of those systems. The main objective of this work is to analyze the effects of the repulsive coulomb interaction U on the coexistence between superconductivity and charge density wave phases region. The main characteristic of the superconductor phase is the null resistance below a certain temperature, while the charge density wave is characterized by a periodic charge modulation on the lattice. With the intent of perform this study, a BCS-like model was used, which considers both the CDW and superconductivity phases. To be able to study the model, the Green's functions technique was used, alongside the Matsubara's formalism. However, the utilized model does not consider strong correlations. The fact that the Matsubara's formalism is invariant towards correlations allows the introduction of correlations by replacing the normal state uncorrelated Green's function by a new Green's function, obtained through the Hubbard-I approximation. The Hubbard model is traditionally used to study strongly correlated systems. Utilizing the combination from those analytical techniques, together with programs developed in the Fortan 95 language, the effects of U on the superconductor and charge density wave gaps were studied, on their pure and coexistence regime. The main effect of U that was observed is a suppression on both phases, that tends to destroy the coexistence of them. The effect of the second nearest neighbor hopping t1 and U on the gaps was also verified, where both suffered a partial suppression. On the high values of U limit, there is a stabilization of the values of the occupation, which is equivalent to the half-filling regime, that causes U to have a saturation tendency above a certain U value. It has been observed that a rise on the value of U also requires a rise on the V values, to stabilize both phases.
id UFSM_dceffacb676b416967e1075683ec335f
oai_identifier_str oai:repositorio.ufsm.br:1/22500
network_acronym_str UFSM
network_name_str Biblioteca Digital de Teses e Dissertações do UFSM
repository_id_str
spelling 2021-10-21T19:11:02Z2021-10-21T19:11:02Z2021-04-28http://repositorio.ufsm.br/handle/1/22500The strongly correlated electron systems raise the interest of researchers from different areas. However, one of the main categories of those are the unconventional superconductors, also known as high-Tc superconductors. Characterized by a critical temperature above 32 K, predicted by the BCS theory, those systems generally show typical strongly correlated systems behaviors, such as in cuprates. This category of systems have a rich phase diagram, with many phases and coexistence regimes. The case of cuprates is an example where both charge density wave and superconductivity coexist, while also showing the antiferromagnetic and spin density wave phases. There exists a consensus that the mechanisms that generate the superconductivity on systems like cuprates are directly associated to the other, neighbouring phases to the superconductivity. Thanks to that, studying those phases and their coexistence is of utmost importance to the understanding of those systems. The main objective of this work is to analyze the effects of the repulsive coulomb interaction U on the coexistence between superconductivity and charge density wave phases region. The main characteristic of the superconductor phase is the null resistance below a certain temperature, while the charge density wave is characterized by a periodic charge modulation on the lattice. With the intent of perform this study, a BCS-like model was used, which considers both the CDW and superconductivity phases. To be able to study the model, the Green's functions technique was used, alongside the Matsubara's formalism. However, the utilized model does not consider strong correlations. The fact that the Matsubara's formalism is invariant towards correlations allows the introduction of correlations by replacing the normal state uncorrelated Green's function by a new Green's function, obtained through the Hubbard-I approximation. The Hubbard model is traditionally used to study strongly correlated systems. Utilizing the combination from those analytical techniques, together with programs developed in the Fortan 95 language, the effects of U on the superconductor and charge density wave gaps were studied, on their pure and coexistence regime. The main effect of U that was observed is a suppression on both phases, that tends to destroy the coexistence of them. The effect of the second nearest neighbor hopping t1 and U on the gaps was also verified, where both suffered a partial suppression. On the high values of U limit, there is a stabilization of the values of the occupation, which is equivalent to the half-filling regime, that causes U to have a saturation tendency above a certain U value. It has been observed that a rise on the value of U also requires a rise on the V values, to stabilize both phases.Os sistemas de elétrons fortemente correlacionados despertam interesse de pesquisadores de diversas áreas. Contudo, uma das principais categorias destes são os supercondutores não convencionais, também conhecidos como supercondutores de altas temperaturas. Caracterizados por uma temperatura crítica acima dos 32 K, previstos pela teoria BCS, normalmente apresentam comportamentos típicos de sistemas fortemente correlacionados, como por exemplo, nos cupratos. Esta categoria de sistemas apresenta um riquíssimo diagrama de fases, com diversas fases e regimes de coexistência. O caso dos cupratos é um exemplo onde as fases supercondutora e charge density wave (CDW) coexistem, além de apresentar as fases antiferromagnéticas e spin density wave. Existe um consenso de que os mecanismos que geram a supercondutividade em sistemas como os cupratos estejam diretamente associados às outras fases vizinhas da fase supercondutora, sendo assim, o estudo dessas fases e de sua coexistência é importante para um melhor entendimento desses sistemas. O objetivo principal deste trabalho é estudar os efeitos da interação coulombiana repulsiva U na região de coexistência entre a fase supercondutora e a fase CDW. A principal característica da fase supercondutora é a resistência nula abaixo de uma determinada temperatura, enquanto que a fase charge density wave é caracterizada por um modulamento periódico de carga na rede. Para realizar este estudo, foi utilizada um modelo tipo BCS que leva em consideração as fases CDW e supercondutora. Para tratar o modelo, utilizou-se a técnica das funções de Green no formalismo de Matsubara. Porém, o modelo utilizado não leva em consideração as correlações fortes devido às interações coulombianas. Utiliza-se o fato de que o formalismo é invariante perante a presença de correlações, e as mesmas são introduzidas a partir da substituição da função de Green para o estado normal não correlacionada por uma correlacionada, obtida através do modelo de Hubbard de uma banda, tratado com a aproximação de Hubbard-I. O modelo de Hubbard é tradicionalmente utilizado para estudos de sistemas fortemente correlacionados, tais como os cupratos. Utilizando a combinação destas técnicas analíticas, juntamente com programas desenvolvidos em linguagem Fortran 95, estudou-se os efeitos de U no comportamento dos gaps supercondutor e charge density wave, puros e em coexistência. O principal efeito de U observado foi um desfavorecimento de ambas as fases, que por consequência, tende a destruir a coexistência das duas. Também verificou-se que o hopping de segundos vizinhos t1 tem efeitos semelhantes à interação coulombiana U. Devido à ocupação média por sítio estabilizar no limite de altos valores de U, os efeitos da interação U sofrem uma tendência de saturação a artir de um determinado valor de U. Também foi constatado que o aumento de U requer um aumento no valor do potencial atrativo V , a fim de estabilizar as fases em questão.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de Santa MariaCentro de Ciências Naturais e ExatasPrograma de Pós-Graduação em FísicaUFSMBrasilFísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSupercondutividadeCoexistênciaCharge density waveCorrelaçõesModelo de HubbardFunções de GreenSuperconductivityCoexistenceCharge density waveCorrelationsHubbard modelGreen's functionsCNPQ::CIENCIAS EXATAS E DA TERRA::FISICACoexistência de supercondutividade e charge density wave em um regime correlacionadoCoexistence of superconductivity and charge density wave in a correlated regimeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCalegari, Eleonir Joãohttp://lattes.cnpq.br/6030572534512173Calegari, Eleonir JoãoZimmer, Fabio MallmannFarias , Ricardo Luciano Sonegohttp://lattes.cnpq.br/2063280436018791Prauchner, Leonardo Costa100500000006600600600600d2f5f9f7-a37b-420a-90f6-3cdaf2e48894a30af302-6a31-496d-a167-4abd425291c3b1b7fd5e-74b1-4c31-a40c-bf85e3530c8f387370b9-fd63-4d27-9992-138d7aa5bdd095bcbc6f-b9a7-4e1a-abc4-373ddee49119reponame:Biblioteca Digital de Teses e Dissertações do UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALDIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdfDIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdfDissertação de Mestradoapplication/pdf4435107http://repositorio.ufsm.br/bitstream/1/22500/1/DIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdfa39d1f3380adc4b262b7693731f38eeeMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/22500/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/22500/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTDIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.txtDIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.txtExtracted texttext/plain162449http://repositorio.ufsm.br/bitstream/1/22500/4/DIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.txt96b62a7ca9c244a4aa976b543906dad6MD54THUMBNAILDIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.jpgDIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.jpgIM Thumbnailimage/jpeg4308http://repositorio.ufsm.br/bitstream/1/22500/5/DIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.jpg3d471094ae7ba4f5a9073fb6d15f167dMD551/225002022-04-29 10:34:44.587oai:repositorio.ufsm.br:1/22500TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKBiblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-04-29T13:34:44Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Coexistência de supercondutividade e charge density wave em um regime correlacionado
dc.title.alternative.eng.fl_str_mv Coexistence of superconductivity and charge density wave in a correlated regime
title Coexistência de supercondutividade e charge density wave em um regime correlacionado
spellingShingle Coexistência de supercondutividade e charge density wave em um regime correlacionado
Prauchner, Leonardo Costa
Supercondutividade
Coexistência
Charge density wave
Correlações
Modelo de Hubbard
Funções de Green
Superconductivity
Coexistence
Charge density wave
Correlations
Hubbard model
Green's functions
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Coexistência de supercondutividade e charge density wave em um regime correlacionado
title_full Coexistência de supercondutividade e charge density wave em um regime correlacionado
title_fullStr Coexistência de supercondutividade e charge density wave em um regime correlacionado
title_full_unstemmed Coexistência de supercondutividade e charge density wave em um regime correlacionado
title_sort Coexistência de supercondutividade e charge density wave em um regime correlacionado
author Prauchner, Leonardo Costa
author_facet Prauchner, Leonardo Costa
author_role author
dc.contributor.advisor1.fl_str_mv Calegari, Eleonir João
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6030572534512173
dc.contributor.referee1.fl_str_mv Calegari, Eleonir João
dc.contributor.referee2.fl_str_mv Zimmer, Fabio Mallmann
dc.contributor.referee3.fl_str_mv Farias , Ricardo Luciano Sonego
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2063280436018791
dc.contributor.author.fl_str_mv Prauchner, Leonardo Costa
contributor_str_mv Calegari, Eleonir João
Calegari, Eleonir João
Zimmer, Fabio Mallmann
Farias , Ricardo Luciano Sonego
dc.subject.por.fl_str_mv Supercondutividade
Coexistência
Charge density wave
Correlações
Modelo de Hubbard
Funções de Green
topic Supercondutividade
Coexistência
Charge density wave
Correlações
Modelo de Hubbard
Funções de Green
Superconductivity
Coexistence
Charge density wave
Correlations
Hubbard model
Green's functions
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Superconductivity
Coexistence
Charge density wave
Correlations
Hubbard model
Green's functions
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description The strongly correlated electron systems raise the interest of researchers from different areas. However, one of the main categories of those are the unconventional superconductors, also known as high-Tc superconductors. Characterized by a critical temperature above 32 K, predicted by the BCS theory, those systems generally show typical strongly correlated systems behaviors, such as in cuprates. This category of systems have a rich phase diagram, with many phases and coexistence regimes. The case of cuprates is an example where both charge density wave and superconductivity coexist, while also showing the antiferromagnetic and spin density wave phases. There exists a consensus that the mechanisms that generate the superconductivity on systems like cuprates are directly associated to the other, neighbouring phases to the superconductivity. Thanks to that, studying those phases and their coexistence is of utmost importance to the understanding of those systems. The main objective of this work is to analyze the effects of the repulsive coulomb interaction U on the coexistence between superconductivity and charge density wave phases region. The main characteristic of the superconductor phase is the null resistance below a certain temperature, while the charge density wave is characterized by a periodic charge modulation on the lattice. With the intent of perform this study, a BCS-like model was used, which considers both the CDW and superconductivity phases. To be able to study the model, the Green's functions technique was used, alongside the Matsubara's formalism. However, the utilized model does not consider strong correlations. The fact that the Matsubara's formalism is invariant towards correlations allows the introduction of correlations by replacing the normal state uncorrelated Green's function by a new Green's function, obtained through the Hubbard-I approximation. The Hubbard model is traditionally used to study strongly correlated systems. Utilizing the combination from those analytical techniques, together with programs developed in the Fortan 95 language, the effects of U on the superconductor and charge density wave gaps were studied, on their pure and coexistence regime. The main effect of U that was observed is a suppression on both phases, that tends to destroy the coexistence of them. The effect of the second nearest neighbor hopping t1 and U on the gaps was also verified, where both suffered a partial suppression. On the high values of U limit, there is a stabilization of the values of the occupation, which is equivalent to the half-filling regime, that causes U to have a saturation tendency above a certain U value. It has been observed that a rise on the value of U also requires a rise on the V values, to stabilize both phases.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-10-21T19:11:02Z
dc.date.available.fl_str_mv 2021-10-21T19:11:02Z
dc.date.issued.fl_str_mv 2021-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/22500
url http://repositorio.ufsm.br/handle/1/22500
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 100500000006
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.authority.fl_str_mv d2f5f9f7-a37b-420a-90f6-3cdaf2e48894
a30af302-6a31-496d-a167-4abd425291c3
b1b7fd5e-74b1-4c31-a40c-bf85e3530c8f
387370b9-fd63-4d27-9992-138d7aa5bdd0
95bcbc6f-b9a7-4e1a-abc4-373ddee49119
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Física
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Biblioteca Digital de Teses e Dissertações do UFSM
collection Biblioteca Digital de Teses e Dissertações do UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/22500/1/DIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf
http://repositorio.ufsm.br/bitstream/1/22500/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/22500/3/license.txt
http://repositorio.ufsm.br/bitstream/1/22500/4/DIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.txt
http://repositorio.ufsm.br/bitstream/1/22500/5/DIS_PPGFISICA_2021_PRAUCHNER_LEONARDO.pdf.jpg
bitstream.checksum.fl_str_mv a39d1f3380adc4b262b7693731f38eee
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
96b62a7ca9c244a4aa976b543906dad6
3d471094ae7ba4f5a9073fb6d15f167d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1801485103455535104