Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000hhrt |
Texto Completo: | http://repositorio.ufsm.br/handle/1/32121 |
Resumo: | Deceptive movement plans are fundamental for Agent-Based Simulation Systems (ABSS) that aim to realistically model and solve real-world adversarial problems. Different scenarios where opposing forces are modeled in ABSS require the planning of movement actions with deceptive aspects. In this case, simulated agents have the capabilities to compute and use paths that can deceive adversaries about their real objectives. However, constructing and evaluating deceptive plans is a complex activity for many users. Despite this issue, the Artificial Intelligence (AI) literature shows a lack of techniques that support the creation of reusable memories containing concrete experiences of deceptive movement planning. In this context, the objective of this work is to investigate the development of ABSS that allow users to specify and test deceptive movement plans in scenarios with topographic terrains. Based on Case-Based Reasoning (CBR) techniques adjusted for the problem-solving needs in this application domain, the work designs, implements, and tests the framework Case-Based Planning for Deceptive Pathfinding (CBPDP), which can retain, retrieve, and reuse deceptive movement plans for groups of agents. The work implements a software development API to support the construction of ABSS. By exploring a simulation system implemented to validate this API, the work addresses the challenge of planning deceptive routes in topographic terrains where path costs in the terrain relief and other factors of deceptive paths are analyzed. The work explores alternative deceptive strategies that are adjusted to analyze the topographic costs of the terrain, not only to determine how deceptive the terrain nodes computed by the pathfinding algorithms are but also to obtain deceptive paths with low costs. In addition to the A algorithm, the Theta algorithm is used in the search for smoother and more realistic deceptive routes, which can better model the routes used by real-world terrestrial agents. The work analyzes deceptive topographic paths calculated according to the notions of Last Deceptive Point (LDP) and Last Topographic Deceptive Point (LDPT ), which allow obtaining deceptive topographic paths computed in terrains with pronounced reliefs. Experimental results with the proposed methods are statistically analyzed according to different pathfinding algorithm analysis metrics, showing that the deceptive strategies computed with the use of the A algorithm return topographic paths with a higher number of deceptive nodes (higher deception density) in reduced execution times. Moreover, the computation strategies of deceptive paths computed with the support of the Theta algorithm and LDPT allow obtaining paths that present a relevant trade-off between the number of deceptive nodes and the quality of the topographic path. Experimental results supported by cross-validation techniques and new problem-solving tests demonstrate the effectiveness of the CBPDP framework in retrieving cases relevant to the deceptive movement problems presented to the system. |
id |
UFSM_f314739404d7a4ba34fc231fe3949775 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/32121 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografiaCase-based planning for deceptive pathfinding in topographic terrainsABMSCBREnganoPathfindingDeceptionCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAODeceptive movement plans are fundamental for Agent-Based Simulation Systems (ABSS) that aim to realistically model and solve real-world adversarial problems. Different scenarios where opposing forces are modeled in ABSS require the planning of movement actions with deceptive aspects. In this case, simulated agents have the capabilities to compute and use paths that can deceive adversaries about their real objectives. However, constructing and evaluating deceptive plans is a complex activity for many users. Despite this issue, the Artificial Intelligence (AI) literature shows a lack of techniques that support the creation of reusable memories containing concrete experiences of deceptive movement planning. In this context, the objective of this work is to investigate the development of ABSS that allow users to specify and test deceptive movement plans in scenarios with topographic terrains. Based on Case-Based Reasoning (CBR) techniques adjusted for the problem-solving needs in this application domain, the work designs, implements, and tests the framework Case-Based Planning for Deceptive Pathfinding (CBPDP), which can retain, retrieve, and reuse deceptive movement plans for groups of agents. The work implements a software development API to support the construction of ABSS. By exploring a simulation system implemented to validate this API, the work addresses the challenge of planning deceptive routes in topographic terrains where path costs in the terrain relief and other factors of deceptive paths are analyzed. The work explores alternative deceptive strategies that are adjusted to analyze the topographic costs of the terrain, not only to determine how deceptive the terrain nodes computed by the pathfinding algorithms are but also to obtain deceptive paths with low costs. In addition to the A algorithm, the Theta algorithm is used in the search for smoother and more realistic deceptive routes, which can better model the routes used by real-world terrestrial agents. The work analyzes deceptive topographic paths calculated according to the notions of Last Deceptive Point (LDP) and Last Topographic Deceptive Point (LDPT ), which allow obtaining deceptive topographic paths computed in terrains with pronounced reliefs. Experimental results with the proposed methods are statistically analyzed according to different pathfinding algorithm analysis metrics, showing that the deceptive strategies computed with the use of the A algorithm return topographic paths with a higher number of deceptive nodes (higher deception density) in reduced execution times. Moreover, the computation strategies of deceptive paths computed with the support of the Theta algorithm and LDPT allow obtaining paths that present a relevant trade-off between the number of deceptive nodes and the quality of the topographic path. Experimental results supported by cross-validation techniques and new problem-solving tests demonstrate the effectiveness of the CBPDP framework in retrieving cases relevant to the deceptive movement problems presented to the system.Planos enganosos de movimentação são fundamentais para Sistemas de Simulação Baseados em Agentes (Agent-Based Simulation Systems (ABSS) que buscam ser realistas na modelagem e resolução de problemas adversariais do mundo real. Diferentes situações onde forças opostas são modeladas em ABSS requerem o planejamento de ações de movimentação com aspectos enganosos. Neste caso, agentes simulados possuem as capacidades de computar e utilizar caminhos que podem enganar os adversários de seus reais objetivos. Porém, construir e avaliar planos enganosos é uma atividade complexa para muitos usuários. Mesmo diante deste problema, a literatura de Inteligência Artificial (IA) mostra que existe uma carência de técnicas que apoiem a criação de memórias reusáveis contendo experiências concretas de planejamento de movimentação enganosos. Neste contexto, o objetivo deste trabalho é investigar o desenvolvimento de ABSS que permitam usuários especificar e testar planos de movimentação enganosos em cenários de terrenos com topografia. Baseado em técnicas de Raciocínio Baseado em Casos (CBR) ajustadas para as necessidades de solução de problemas neste domínio de aplicação, o trabalho projeta, implementa e testa o framework Case-Based Planning for Deceptive Pathfinding - CBPDP, o qual é capaz de reter, recuperar e reusar planejamentos de movimentação enganosos para grupos de agentes. O trabalho implementa uma API de desenvolvimento de software para apoiar a construção de ABSS. Explorando um sistema de simulação implementado para validar esta API, o trabalho aborda o desafio de planejar rotas enganosas em terrenos topográficos onde os custos de caminhos no relevo do terreno e outros fatores de caminhos enganosos são analisados. O trabalho explora estratégias enganosas alternativas que são ajustadas para analisar os custos topográficos do terreno, não apenas para determinar o quão enganosos são os nodos do terreno computados pelos algoritmos de pathfinding, mas também para obter caminhos enganosos com baixos custos. Além do algoritmo A , o algoritmo Theta é usado na busca por rotas enganosas mais suavizadas e realistas, os quais podem melhor modelar as rotas usadas por agentes terrestres do mundo real. O trabalho analisa caminhos topográficos enganosos calculados de acordo com as noções de Último Ponto Enganoso (LDP) e Último Ponto Enganoso Topográfico (LDPT ), as quais permitem obter caminhos topográficos enganosos computados em terrenos com relevos pronunciados. Resultados experimentais com os métodos propostos são analisados estatisticamente de acordo com diferentes métricas de análise de algoritmos de pathfinding, mostrando que as estratégias enganosas computadas com o emprego do algoritmo A retornam caminhos topográficos com maior número de nodos enganosos (maior densidade de engano) em tempos de execução reduzidos. Além disso, as estratégias de computação de caminhos enganosos computadas com o apoio do algoritmo Theta e LDPT permitem obter caminhos que apresentam um trade-off relevante de número de nodos enganosos e qualidade do caminho topográfico. Resultados experimentais apoiados por técnicas de validação cruzada e testes de resolução de novos problemas demonstrar a efetividade do framework de CBPDP em recuperar casos relevantes aos problemas de movimentação enganosos apresentados ao sistema.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em Ciência da ComputaçãoCentro de TecnologiaSilva, Luís Alvaro de Limahttp://lattes.cnpq.br/8066370508832550Bordini, Rafael HeitorEmmendorfer, Leonardo RamosFreitas, Edison Pignaton deLenhard, Crhistopher2024-07-02T15:07:51Z2024-07-02T15:07:51Z2024-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32121ark:/26339/001300000hhrtporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-07-02T15:07:51Zoai:repositorio.ufsm.br:1/32121Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-29T10:40:29.727087Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia Case-based planning for deceptive pathfinding in topographic terrains |
title |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia |
spellingShingle |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia Lenhard, Crhistopher ABMS CBR Engano Pathfinding Deception CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia |
title_full |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia |
title_fullStr |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia |
title_full_unstemmed |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia |
title_sort |
Planejamento baseado em casos para pathfinding enganoso em terrenos com topografia |
author |
Lenhard, Crhistopher |
author_facet |
Lenhard, Crhistopher |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Luís Alvaro de Lima http://lattes.cnpq.br/8066370508832550 Bordini, Rafael Heitor Emmendorfer, Leonardo Ramos Freitas, Edison Pignaton de |
dc.contributor.author.fl_str_mv |
Lenhard, Crhistopher |
dc.subject.por.fl_str_mv |
ABMS CBR Engano Pathfinding Deception CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
ABMS CBR Engano Pathfinding Deception CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Deceptive movement plans are fundamental for Agent-Based Simulation Systems (ABSS) that aim to realistically model and solve real-world adversarial problems. Different scenarios where opposing forces are modeled in ABSS require the planning of movement actions with deceptive aspects. In this case, simulated agents have the capabilities to compute and use paths that can deceive adversaries about their real objectives. However, constructing and evaluating deceptive plans is a complex activity for many users. Despite this issue, the Artificial Intelligence (AI) literature shows a lack of techniques that support the creation of reusable memories containing concrete experiences of deceptive movement planning. In this context, the objective of this work is to investigate the development of ABSS that allow users to specify and test deceptive movement plans in scenarios with topographic terrains. Based on Case-Based Reasoning (CBR) techniques adjusted for the problem-solving needs in this application domain, the work designs, implements, and tests the framework Case-Based Planning for Deceptive Pathfinding (CBPDP), which can retain, retrieve, and reuse deceptive movement plans for groups of agents. The work implements a software development API to support the construction of ABSS. By exploring a simulation system implemented to validate this API, the work addresses the challenge of planning deceptive routes in topographic terrains where path costs in the terrain relief and other factors of deceptive paths are analyzed. The work explores alternative deceptive strategies that are adjusted to analyze the topographic costs of the terrain, not only to determine how deceptive the terrain nodes computed by the pathfinding algorithms are but also to obtain deceptive paths with low costs. In addition to the A algorithm, the Theta algorithm is used in the search for smoother and more realistic deceptive routes, which can better model the routes used by real-world terrestrial agents. The work analyzes deceptive topographic paths calculated according to the notions of Last Deceptive Point (LDP) and Last Topographic Deceptive Point (LDPT ), which allow obtaining deceptive topographic paths computed in terrains with pronounced reliefs. Experimental results with the proposed methods are statistically analyzed according to different pathfinding algorithm analysis metrics, showing that the deceptive strategies computed with the use of the A algorithm return topographic paths with a higher number of deceptive nodes (higher deception density) in reduced execution times. Moreover, the computation strategies of deceptive paths computed with the support of the Theta algorithm and LDPT allow obtaining paths that present a relevant trade-off between the number of deceptive nodes and the quality of the topographic path. Experimental results supported by cross-validation techniques and new problem-solving tests demonstrate the effectiveness of the CBPDP framework in retrieving cases relevant to the deceptive movement problems presented to the system. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-02T15:07:51Z 2024-07-02T15:07:51Z 2024-04-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/32121 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000hhrt |
url |
http://repositorio.ufsm.br/handle/1/32121 |
identifier_str_mv |
ark:/26339/001300000hhrt |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1814439793910611968 |