Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja

Detalhes bibliográficos
Autor(a) principal: Klinger, Caroline
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/30728
Resumo: In the present work heavy metals removal from real phosphate effluent, a stage of the industrial painting process, was investigated. As adsorbents, bentonite clay and soybean hulls without previous treatments were evaluated. Initially, the effluent was characterized regarding the initial concentration of metals and COD. The characterization of the adsorbents included BET, FTIR, XRD and pHPZC analyses. Afterwards, the influence of the variables adsorbent dosage (0.5, 1.0 and 5.0 g), pH (3 and 4) and temperature (25, 40 and 50°C) was evaluated, the equilibrium isotherms were constructed, the adsorption kinetics were studied and the definition of the mathematical models that best described the process was carried out. The initial metals concentration in the effluent was 953.85 mg/L (Zn), 818.6 mg/L (Ni) and 343.45 mg/L (Mn). The average Sauter diameter of the adsorbents was 63.5 μm and 0.2705 mm, the BET specific surface area was 180.8504 m²/g and 0.3063 m²/g, the pHPZC found was 3.65 and 6.43 for clay and soybean hulls, respectively. As for the influencing variables, the maximum removals were with 5 g/100 mL of adsorbent for both materials tested and the highest values achieved were with soybean hulls being 16.5% (Mn), 24.5% (Ni) and 28 .6% (Zn). Increasing the temperature only resulted in increased metal removal up to 40°C when using bentonite clay as an adsorbent. Similarly, the pH variation also only influenced the removal of metals from the clay. For both adsorbents, the equilibrium isotherms revealed endothermic behavior and the maximum adsorption capacities were 14.13 mg/g (Zn), 7.80 mg/g (Mn) and 3.12 mg/g (Ni) using soybean hulls and 12.68 mg/g (Zn), 4.35 mg/g (Mn) and 3.03 mg/g (Ni) for bentonite clay. Finally, the kinetic curves grew rapidly in the first minutes and a good fit to the pseudo-first order and pseudo-second order kinetic models was found. From the results obtained, it is possible to state that both adsorbents showed potential for adsorption of heavy metals, composing a low-cost complementary effluent treatment option.
id UFSM_ff9d8226fed38a46f7141fb127689d1a
oai_identifier_str oai:repositorio.ufsm.br:1/30728
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de sojaAdsorption of heavy metals from industrial phosphating effluent using bentonite clay and soybean hullZincoNíquelManganêsEfluente realZincNickelManganeseReal effluentCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICAIn the present work heavy metals removal from real phosphate effluent, a stage of the industrial painting process, was investigated. As adsorbents, bentonite clay and soybean hulls without previous treatments were evaluated. Initially, the effluent was characterized regarding the initial concentration of metals and COD. The characterization of the adsorbents included BET, FTIR, XRD and pHPZC analyses. Afterwards, the influence of the variables adsorbent dosage (0.5, 1.0 and 5.0 g), pH (3 and 4) and temperature (25, 40 and 50°C) was evaluated, the equilibrium isotherms were constructed, the adsorption kinetics were studied and the definition of the mathematical models that best described the process was carried out. The initial metals concentration in the effluent was 953.85 mg/L (Zn), 818.6 mg/L (Ni) and 343.45 mg/L (Mn). The average Sauter diameter of the adsorbents was 63.5 μm and 0.2705 mm, the BET specific surface area was 180.8504 m²/g and 0.3063 m²/g, the pHPZC found was 3.65 and 6.43 for clay and soybean hulls, respectively. As for the influencing variables, the maximum removals were with 5 g/100 mL of adsorbent for both materials tested and the highest values achieved were with soybean hulls being 16.5% (Mn), 24.5% (Ni) and 28 .6% (Zn). Increasing the temperature only resulted in increased metal removal up to 40°C when using bentonite clay as an adsorbent. Similarly, the pH variation also only influenced the removal of metals from the clay. For both adsorbents, the equilibrium isotherms revealed endothermic behavior and the maximum adsorption capacities were 14.13 mg/g (Zn), 7.80 mg/g (Mn) and 3.12 mg/g (Ni) using soybean hulls and 12.68 mg/g (Zn), 4.35 mg/g (Mn) and 3.03 mg/g (Ni) for bentonite clay. Finally, the kinetic curves grew rapidly in the first minutes and a good fit to the pseudo-first order and pseudo-second order kinetic models was found. From the results obtained, it is possible to state that both adsorbents showed potential for adsorption of heavy metals, composing a low-cost complementary effluent treatment option.No presente trabalho a remoção de metais pesados de efluente real de fosfatização, uma etapa do processo de pintura industrial, foi investigada. Como adsorventes foram avaliados argila bentonita e casca de soja sem tratamentos prévios. Inicialmente, o efluente foi caracterizado quanto à concentração inicial de metais e DQO. A caracterização dos adsorventes compreendeu as análises de BET, FTIR, DRX e pHPZC. Após, a influência das variáveis massa de adsorvente (0,5, 1,0 e 5,0 g), pH (3 e 4) e temperatura (25, 40 e 50°C) foi avaliada, as isotermas de equilíbrio foram construídas, a cinética da adsorção foi estudada e a definição dos modelos matemáticos que melhor descreveram o processo foi realizada. A concentração inicial de metais no efluente foi de 953,85 mg/L (Zn), 818,6 mg/L (Ni) e 343,45 mg/L (Mn). O diâmetro médio de Sauter dos adsorventes foi de 63,5 μm e 0,2705 mm, a área superficial específica BET foi de 180,8504 m²/g e 0,3063 m²/g, o pHPZC encontrado foi de 3,65 e 6,43 para a argila e casca de soja, respectivamente. Quanto às variáveis de influência, as remoções máximas foram com 5 g/100 mL de adsorvente para ambos os materiais testados e os maiores valores foram atingidos com casca de soja sendo 16,5% (Mn), 24,5% (Ni) e 28,6% (Zn). O aumento da temperatura somente resultou em aumento da remoção de metais até 40°C ao utilizar argila bentonita como adsorvente. De forma similar, a variação de pH também só influenciou na remoção de metais para a argila. Para ambos os adsorventes as isotermas de equilíbrio revelaram comportamento endotérmico e as capacidades máximas de adsorção foram 14,13 mg/g (Zn), 7,80 mg/g (Mn) e 3,12 mg/g (Ni) usando casca de soja e 12,68 mg/g (Zn), 4,35 mg/g (Mn) e 3,03 mg/g (Ni) para argila. Por fim, as curvas cinéticas tiveram de forma geral um crescimento rápido nos primeiros minutos e uma boa qualidade de ajuste aos modelos cinéticos de pseudo primeira ordem e pseudo segunda ordem foi encontrada. A partir dos resultados obtidos, é possível afirmar que ambos os adsorventes apresentaram potencial para adsorção de metais pesados, constituindo uma opção de tratamento de efluentes complementar de baixo custo.Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaCastilhos, Fernanda dehttp://lattes.cnpq.br/4590978604104577Dotto, Guilherme LuizNunes, Isaac dos SantosPeres, Enrique ChavesKlinger, Caroline2023-11-29T15:00:17Z2023-11-29T15:00:17Z2023-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/30728porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-11-29T15:00:17Zoai:repositorio.ufsm.br:1/30728Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-11-29T15:00:17Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
Adsorption of heavy metals from industrial phosphating effluent using bentonite clay and soybean hull
title Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
spellingShingle Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
Klinger, Caroline
Zinco
Níquel
Manganês
Efluente real
Zinc
Nickel
Manganese
Real effluent
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
title_full Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
title_fullStr Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
title_full_unstemmed Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
title_sort Adsorção de metais pesados de efluente de fosfatização industrial usando argila bentonita e casca de soja
author Klinger, Caroline
author_facet Klinger, Caroline
author_role author
dc.contributor.none.fl_str_mv Castilhos, Fernanda de
http://lattes.cnpq.br/4590978604104577
Dotto, Guilherme Luiz
Nunes, Isaac dos Santos
Peres, Enrique Chaves
dc.contributor.author.fl_str_mv Klinger, Caroline
dc.subject.por.fl_str_mv Zinco
Níquel
Manganês
Efluente real
Zinc
Nickel
Manganese
Real effluent
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
topic Zinco
Níquel
Manganês
Efluente real
Zinc
Nickel
Manganese
Real effluent
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description In the present work heavy metals removal from real phosphate effluent, a stage of the industrial painting process, was investigated. As adsorbents, bentonite clay and soybean hulls without previous treatments were evaluated. Initially, the effluent was characterized regarding the initial concentration of metals and COD. The characterization of the adsorbents included BET, FTIR, XRD and pHPZC analyses. Afterwards, the influence of the variables adsorbent dosage (0.5, 1.0 and 5.0 g), pH (3 and 4) and temperature (25, 40 and 50°C) was evaluated, the equilibrium isotherms were constructed, the adsorption kinetics were studied and the definition of the mathematical models that best described the process was carried out. The initial metals concentration in the effluent was 953.85 mg/L (Zn), 818.6 mg/L (Ni) and 343.45 mg/L (Mn). The average Sauter diameter of the adsorbents was 63.5 μm and 0.2705 mm, the BET specific surface area was 180.8504 m²/g and 0.3063 m²/g, the pHPZC found was 3.65 and 6.43 for clay and soybean hulls, respectively. As for the influencing variables, the maximum removals were with 5 g/100 mL of adsorbent for both materials tested and the highest values achieved were with soybean hulls being 16.5% (Mn), 24.5% (Ni) and 28 .6% (Zn). Increasing the temperature only resulted in increased metal removal up to 40°C when using bentonite clay as an adsorbent. Similarly, the pH variation also only influenced the removal of metals from the clay. For both adsorbents, the equilibrium isotherms revealed endothermic behavior and the maximum adsorption capacities were 14.13 mg/g (Zn), 7.80 mg/g (Mn) and 3.12 mg/g (Ni) using soybean hulls and 12.68 mg/g (Zn), 4.35 mg/g (Mn) and 3.03 mg/g (Ni) for bentonite clay. Finally, the kinetic curves grew rapidly in the first minutes and a good fit to the pseudo-first order and pseudo-second order kinetic models was found. From the results obtained, it is possible to state that both adsorbents showed potential for adsorption of heavy metals, composing a low-cost complementary effluent treatment option.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-29T15:00:17Z
2023-11-29T15:00:17Z
2023-10-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/30728
url http://repositorio.ufsm.br/handle/1/30728
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1805922073204228096