Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco

Detalhes bibliográficos
Autor(a) principal: Granato, Alessandro Eustaquio Campos [UNIFESP]
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6316761
https://repositorio.unifesp.br/handle/11600/53058
Resumo: Na primeira parte deste trabalho, apresentamos uma metodologia para a produção e aplicação de materiais híbridos contendo poliéster comercial (poli-butileno adipato-co-tereftalato, PBAT) e um polímero condutor (polipirrole, PPy) produzidos pela técnica de eletrospinning, como arcabouço (scaffold) para cultura e diferenciação de neurônios. As propriedades físico-químicas dos substratos e a otimização dos parâmetros de eletrospinning são apresentados. Os scaffolds eletrofiados são biocompativeis e permitem a aderência e proliferação de células-tronco mesenquimais (CTM). As fibras de PBAT com ou sem PPy foram utilizadas como substrato para adesão e diferenciação de células de neuroblastoma (Neuro2a) de camundongo. As Neuro2a aderiram nos scaffolds de PBAT e PBAT / PPy2% sem revestimento de laminina. No entanto, células Neuro2a estimuladas por ácido retinóico (RA), não diferenciaram quando foram cultivadas em PBAT, mas diferenciaram quando cultivadas em fibras de PBAT / PPy2%. Nossa hipótese é que a hidrofobicidade do PBAT tenha inibido a diferenciação, e que a inibição tenha sido superada ao revestir as fibras de PBAT com laminina. Concluímos que as fibras produzidas com a combinação de PBAT e PPy são um bom suporte para a diferenciação neuronal. Na segunda parte deste trabalho, estudamos scaffolds biológicos descelularizados derivados de cérebros murinos como suporte para cultivo de células neurais. Scaffolds compostos de matriz extracelular (MEC) estão sendo investigados por sua capacidade de facilitar a remodelação e reparo do tecido cerebral após uma lesão. A MEC é um material complexo composto por proteínas, glicoproteínas e proteoglicanos, que são secretados pelas células. A MEC contém pistas biológicas importantes que modulam comportamentos celulares, e também serve como um suporte estrutural ao qual as células podem aderir. No entanto, os protocolos descritos atualmente para a descelularização de órgãos, como o cérebro, envolvem o uso de muitos reagentes químicos com muitas etapas que, em última instância, limitam o processo de recelularização. Portanto, descrevemos pela primeira vez um método simples e rápido para a decelularização completa de cérebro murino. Nossos resultados mostram que, em 24h, os cérebros de camundongos foram completamente descelularizados, mas ainda mantiveram vários componentes MEC essenciais para a sobrevivência celular e repovoamento do scaffold. Além disso, observamos que o scaffold descelularizado de cérebro é biocompatível, pois células Neuro2a injetadas no scaffold e mantidas em cultura durante 24 e 72h foram localizadas e identificadas por imuno-histoquímica na sua forma indiferenciada. Concluímos que este novo método para descelularização do cérebro murino é eficiente e os scaffolds podem ser usados como um suporte biocompatível para o repovoamento celular.
id UFSP_37368b9b6830f3fd2e8d2ebd7629141d
oai_identifier_str oai:repositorio.unifesp.br:11600/53058
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Granato, Alessandro Eustaquio Campos [UNIFESP]Universidade Federal de São Paulo (UNIFESP)http://lattes.cnpq.br/1158085171478998http://lattes.cnpq.br/6155537170968904Porcionatto, Marimelia [UNIFESP]São Paulo2020-03-25T12:10:54Z2020-03-25T12:10:54Z2018-05-24https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6316761https://repositorio.unifesp.br/handle/11600/530582018-1003.pdfNa primeira parte deste trabalho, apresentamos uma metodologia para a produção e aplicação de materiais híbridos contendo poliéster comercial (poli-butileno adipato-co-tereftalato, PBAT) e um polímero condutor (polipirrole, PPy) produzidos pela técnica de eletrospinning, como arcabouço (scaffold) para cultura e diferenciação de neurônios. As propriedades físico-químicas dos substratos e a otimização dos parâmetros de eletrospinning são apresentados. Os scaffolds eletrofiados são biocompativeis e permitem a aderência e proliferação de células-tronco mesenquimais (CTM). As fibras de PBAT com ou sem PPy foram utilizadas como substrato para adesão e diferenciação de células de neuroblastoma (Neuro2a) de camundongo. As Neuro2a aderiram nos scaffolds de PBAT e PBAT / PPy2% sem revestimento de laminina. No entanto, células Neuro2a estimuladas por ácido retinóico (RA), não diferenciaram quando foram cultivadas em PBAT, mas diferenciaram quando cultivadas em fibras de PBAT / PPy2%. Nossa hipótese é que a hidrofobicidade do PBAT tenha inibido a diferenciação, e que a inibição tenha sido superada ao revestir as fibras de PBAT com laminina. Concluímos que as fibras produzidas com a combinação de PBAT e PPy são um bom suporte para a diferenciação neuronal. Na segunda parte deste trabalho, estudamos scaffolds biológicos descelularizados derivados de cérebros murinos como suporte para cultivo de células neurais. Scaffolds compostos de matriz extracelular (MEC) estão sendo investigados por sua capacidade de facilitar a remodelação e reparo do tecido cerebral após uma lesão. A MEC é um material complexo composto por proteínas, glicoproteínas e proteoglicanos, que são secretados pelas células. A MEC contém pistas biológicas importantes que modulam comportamentos celulares, e também serve como um suporte estrutural ao qual as células podem aderir. No entanto, os protocolos descritos atualmente para a descelularização de órgãos, como o cérebro, envolvem o uso de muitos reagentes químicos com muitas etapas que, em última instância, limitam o processo de recelularização. Portanto, descrevemos pela primeira vez um método simples e rápido para a decelularização completa de cérebro murino. Nossos resultados mostram que, em 24h, os cérebros de camundongos foram completamente descelularizados, mas ainda mantiveram vários componentes MEC essenciais para a sobrevivência celular e repovoamento do scaffold. Além disso, observamos que o scaffold descelularizado de cérebro é biocompatível, pois células Neuro2a injetadas no scaffold e mantidas em cultura durante 24 e 72h foram localizadas e identificadas por imuno-histoquímica na sua forma indiferenciada. Concluímos que este novo método para descelularização do cérebro murino é eficiente e os scaffolds podem ser usados como um suporte biocompatível para o repovoamento celular.In the first part of this work we present a methodology for production and application of electrospun hybrid materials containing commercially available polyester (poly-butylene adipate-co-terephthalate; PBAT), and a conductive polymer (polypirrole; PPy) as scaffold for neuronal growth and differentiation. The physical-chemical properties of the scaffolds and optimization of the electrospinning parameters are presented. The electrospun scaffolds are biocompatible and allow proper adhesion and spread of mesenchymal stem cells (MSCs). Fibers produced with PBAT with or without PPy were used as scaffold for Neuro2a mouse neuroblastoma cells adhesion and differentiation. Neuro2a adhered to PBAT and PBAT/PPy2% scaffolds without laminin coating. However, Neuro2a failed to differentiate in PBAT when stimulated by treatment with retinoic acid (RA), but differentiated in PBAT/PPy2% fibers. We hypothesize that PBAT hydrophobicity inhibited proper spreading and further differentiation, and inhibition was overcome by coating the PBAT fibers with laminin. We conclude that fibers produced with the combination of PBAT and PPy can support neuronal differentiation. In the second part of this work we decided to study decellularized biological scaffolds derived from murine brains as another translational approach. Scaffolds composed of extracellular matrix (ECM) are being investigated for their ability to facilitate brain tissue remodeling and repair following injury. Tissue extracellular matrix (ECM) is a complex material made up of fibrous proteins and ground substance (glycosaminoglycans, GAGs) that are secreted by cells. ECM contains important biological cues that modulate cell behaviors, and it also serves as a structural scaffold to which cells can adhere. However the methodologies currently described for decellularizing organs such as the brain involve the use of many chemical reagents with many steps that ultimately limit the process of organ or tissue recellularization. Therefore we describe for the first time a simple, fast method for complete murine brain decellularization. Our results show that in 24h mice brains were completely decellularized, but still maintaining several ECM components essential for cell survival and repopulation of the scaffold. Beyond that we found that the Decellularized Brain Scaffold (DBS) are biocompatible since we showed that Neuro2a cells injected into the DBS and maintained in culture for 24 and 72h could be identified by immunohistochemistry in its undifferentiated form. We conclude that this novel method for murine brain decellularization is efficient and DBS can be used as a biocompatible scaffold for cell repopulation.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq162970/2013-7Dados abertos - Sucupira - Teses e dissertações (2018)99 f.porUniversidade Federal de São Paulo (UNIFESP)PpyPbtaNanofiberDecellularizationScaffoldAnálise de diferentes biomateriais como suporte para cultivo de células neurais e células-troncoAnalysis of different biomaterials as support for culture of neural cells and stem cellsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDoutoradoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESPSão Paulo, Escola Paulista de MedicinaCiências Biológicas (Biologia Molecular)Ciências BiológicasORIGINALAlessandro Eustaquio Campos Granato - A.pdfAlessandro Eustaquio Campos Granato - A.pdfTese de doutoradoapplication/pdf1811844${dspace.ui.url}/bitstream/11600/53058/1/Alessandro%20Eustaquio%20Campos%20Granato%20-%20A.pdff781ff9ead71222f6c776ffcdcfc0225MD51open access11600/530582023-06-28 10:42:14.566open accessoai:repositorio.unifesp.br:11600/53058Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestopendoar:34652023-06-28T13:42:14Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.pt.fl_str_mv Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
dc.title.alternative.none.fl_str_mv Analysis of different biomaterials as support for culture of neural cells and stem cells
title Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
spellingShingle Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
Granato, Alessandro Eustaquio Campos [UNIFESP]
Ppy
Pbta
Nanofiber
Decellularization
Scaffold
title_short Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
title_full Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
title_fullStr Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
title_full_unstemmed Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
title_sort Análise de diferentes biomateriais como suporte para cultivo de células neurais e células-tronco
author Granato, Alessandro Eustaquio Campos [UNIFESP]
author_facet Granato, Alessandro Eustaquio Campos [UNIFESP]
author_role author
dc.contributor.institution.pt.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/1158085171478998
dc.contributor.advisorLattes.none.fl_str_mv http://lattes.cnpq.br/6155537170968904
dc.contributor.author.fl_str_mv Granato, Alessandro Eustaquio Campos [UNIFESP]
dc.contributor.advisor1.fl_str_mv Porcionatto, Marimelia [UNIFESP]
contributor_str_mv Porcionatto, Marimelia [UNIFESP]
dc.subject.por.fl_str_mv Ppy
Pbta
Nanofiber
Decellularization
Scaffold
topic Ppy
Pbta
Nanofiber
Decellularization
Scaffold
description Na primeira parte deste trabalho, apresentamos uma metodologia para a produção e aplicação de materiais híbridos contendo poliéster comercial (poli-butileno adipato-co-tereftalato, PBAT) e um polímero condutor (polipirrole, PPy) produzidos pela técnica de eletrospinning, como arcabouço (scaffold) para cultura e diferenciação de neurônios. As propriedades físico-químicas dos substratos e a otimização dos parâmetros de eletrospinning são apresentados. Os scaffolds eletrofiados são biocompativeis e permitem a aderência e proliferação de células-tronco mesenquimais (CTM). As fibras de PBAT com ou sem PPy foram utilizadas como substrato para adesão e diferenciação de células de neuroblastoma (Neuro2a) de camundongo. As Neuro2a aderiram nos scaffolds de PBAT e PBAT / PPy2% sem revestimento de laminina. No entanto, células Neuro2a estimuladas por ácido retinóico (RA), não diferenciaram quando foram cultivadas em PBAT, mas diferenciaram quando cultivadas em fibras de PBAT / PPy2%. Nossa hipótese é que a hidrofobicidade do PBAT tenha inibido a diferenciação, e que a inibição tenha sido superada ao revestir as fibras de PBAT com laminina. Concluímos que as fibras produzidas com a combinação de PBAT e PPy são um bom suporte para a diferenciação neuronal. Na segunda parte deste trabalho, estudamos scaffolds biológicos descelularizados derivados de cérebros murinos como suporte para cultivo de células neurais. Scaffolds compostos de matriz extracelular (MEC) estão sendo investigados por sua capacidade de facilitar a remodelação e reparo do tecido cerebral após uma lesão. A MEC é um material complexo composto por proteínas, glicoproteínas e proteoglicanos, que são secretados pelas células. A MEC contém pistas biológicas importantes que modulam comportamentos celulares, e também serve como um suporte estrutural ao qual as células podem aderir. No entanto, os protocolos descritos atualmente para a descelularização de órgãos, como o cérebro, envolvem o uso de muitos reagentes químicos com muitas etapas que, em última instância, limitam o processo de recelularização. Portanto, descrevemos pela primeira vez um método simples e rápido para a decelularização completa de cérebro murino. Nossos resultados mostram que, em 24h, os cérebros de camundongos foram completamente descelularizados, mas ainda mantiveram vários componentes MEC essenciais para a sobrevivência celular e repovoamento do scaffold. Além disso, observamos que o scaffold descelularizado de cérebro é biocompatível, pois células Neuro2a injetadas no scaffold e mantidas em cultura durante 24 e 72h foram localizadas e identificadas por imuno-histoquímica na sua forma indiferenciada. Concluímos que este novo método para descelularização do cérebro murino é eficiente e os scaffolds podem ser usados como um suporte biocompatível para o repovoamento celular.
publishDate 2018
dc.date.issued.fl_str_mv 2018-05-24
dc.date.accessioned.fl_str_mv 2020-03-25T12:10:54Z
dc.date.available.fl_str_mv 2020-03-25T12:10:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.pt.fl_str_mv https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6316761
dc.identifier.uri.fl_str_mv https://repositorio.unifesp.br/handle/11600/53058
dc.identifier.file.none.fl_str_mv 2018-1003.pdf
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6316761
https://repositorio.unifesp.br/handle/11600/53058
identifier_str_mv 2018-1003.pdf
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 99 f.
dc.coverage.spatial.none.fl_str_mv São Paulo
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
bitstream.url.fl_str_mv ${dspace.ui.url}/bitstream/11600/53058/1/Alessandro%20Eustaquio%20Campos%20Granato%20-%20A.pdf
bitstream.checksum.fl_str_mv f781ff9ead71222f6c776ffcdcfc0225
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv
_version_ 1802764237432422400