Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata

Detalhes bibliográficos
Autor(a) principal: Herrera, Francis Lorena Larreal [UNIFESP]
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5004460
https://repositorio.unifesp.br/handle/11600/50651
Resumo: In this dissertation, we study Brent’s method to solve systems of equations and their relation with Inexata Restoration methods. Brent’s method solves a non-linear system by dividing it into blocks and considering linearizations of these blocks in each iteration. We reconstruct a proof of a theorem in which are established the conditions so that the point sequence generated by Brent’s method has local quadratic convergence to the system solution. Inexact Restoration methods are developed to solved constrained optimization problems and the have the characteristic of dividing each iteration into two phases. In the first one, they seek to improve viability and, in the second, optimality. So, it is natural to think that Inexact Restoration methods look to solve the KKT system by dividing it into two blocks. For this reason, it seems evident the existence of a relation between Brent’s and Inexact Restoration methods. Considering this, we present a quadratic local convergence result for the point sequences generated by the Inexact Restoration methods, derived from adaptations in the convergence demonstration of Brent’s method. After that, we propose two iterative computational methods for optimization, introducing small modifications in the Inexact Restoration method. We show that these two methods also have quadratic convergence and we discuss possible advantages and disadvantages of each one of them. Finally we briefly comment some ideas about how these methods could be inserted into a scheme with global convergence.
id UFSP_510e6e41742d482edc4a32bc08b84b89
oai_identifier_str oai:repositorio.unifesp.br/:11600/50651
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Métodos Do Tipo Newton Aplicados A Métodos De Restauração InexataNewton's MethodBrent's MethodNon-Linear OptimizationKkt ConditionsInexact Restoration MethodsMétodo De NewtonMétodo De BrentOtimização Não LinearCondições KktRestauração InexataIn this dissertation, we study Brent’s method to solve systems of equations and their relation with Inexata Restoration methods. Brent’s method solves a non-linear system by dividing it into blocks and considering linearizations of these blocks in each iteration. We reconstruct a proof of a theorem in which are established the conditions so that the point sequence generated by Brent’s method has local quadratic convergence to the system solution. Inexact Restoration methods are developed to solved constrained optimization problems and the have the characteristic of dividing each iteration into two phases. In the first one, they seek to improve viability and, in the second, optimality. So, it is natural to think that Inexact Restoration methods look to solve the KKT system by dividing it into two blocks. For this reason, it seems evident the existence of a relation between Brent’s and Inexact Restoration methods. Considering this, we present a quadratic local convergence result for the point sequences generated by the Inexact Restoration methods, derived from adaptations in the convergence demonstration of Brent’s method. After that, we propose two iterative computational methods for optimization, introducing small modifications in the Inexact Restoration method. We show that these two methods also have quadratic convergence and we discuss possible advantages and disadvantages of each one of them. Finally we briefly comment some ideas about how these methods could be inserted into a scheme with global convergence.Nesta dissertação, estudamos o método de Brent para resolução de sistemas de equações e a sua relação com métodos de Restauração Inexata. O método de Brent resolve um sistema não linear dividindo-o em blocos e considerando linearizações destes blocos em cada iteração. Reconstruímos uma demonstração de um teorema no qual são estabelecidas condições para que a sequência de pontos gerada pelo método de Brent possua convergência local quadrática à solução do sistema. Métodos de Restauração Inexata são desenvolvidos para resolver problemas de otimização com restrições e possuem a característica de dividir cada iteração em duas fases. Na primeira delas, busca-se melhorar a factibilidade e, na segunda, a otimalidade. Desta forma, é natural pensar que em métodos de Restauração Inexata busca-se resolver o sistema KKT dividindo-o em dois blocos. Por esta razão, fica evidente a existência de uma relação entre métodos de Brent e de Restauração Inexata. Pensando nisso, apresentamos um resultado de convergência local quadrática para sequências de pontos geradas pelos métodos de Restauração Inexata, proveniente de adaptações na demonstração de convergência do método de Brent. Posteriormente, propomos dois métodos computacionais iterativos para otimização, introduzindo pequenas modificações no método de Restauração Inexata. Mostramos que estes dois métodos também têm convergência quadrática e discutimos possíveis vantagens e desvantagens de cada um deles. Finalmente comentamos brevemente algumas ideias de como estes métodos poderiam ser inseridos em um esquema com convergência global.Dados abertos - Sucupira - Teses e dissertações (2017)Universidade Federal de São Paulo (UNIFESP)Bueno, Luis Felipe Cesar Da Rocha [UNIFESP]Universidade Federal de São Paulo (UNIFESP)Herrera, Francis Lorena Larreal [UNIFESP]2019-06-19T14:58:13Z2019-06-19T14:58:13Z2017-03-14info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion130p.application/pdfhttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5004460FRANCIS LORENA LARREAL HERRERA.pdfhttps://repositorio.unifesp.br/handle/11600/50651porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-02T19:31:19Zoai:repositorio.unifesp.br/:11600/50651Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-02T19:31:19Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
title Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
spellingShingle Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
Herrera, Francis Lorena Larreal [UNIFESP]
Newton's Method
Brent's Method
Non-Linear Optimization
Kkt Conditions
Inexact Restoration Methods
Método De Newton
Método De Brent
Otimização Não Linear
Condições Kkt
Restauração Inexata
title_short Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
title_full Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
title_fullStr Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
title_full_unstemmed Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
title_sort Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
author Herrera, Francis Lorena Larreal [UNIFESP]
author_facet Herrera, Francis Lorena Larreal [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Bueno, Luis Felipe Cesar Da Rocha [UNIFESP]
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Herrera, Francis Lorena Larreal [UNIFESP]
dc.subject.por.fl_str_mv Newton's Method
Brent's Method
Non-Linear Optimization
Kkt Conditions
Inexact Restoration Methods
Método De Newton
Método De Brent
Otimização Não Linear
Condições Kkt
Restauração Inexata
topic Newton's Method
Brent's Method
Non-Linear Optimization
Kkt Conditions
Inexact Restoration Methods
Método De Newton
Método De Brent
Otimização Não Linear
Condições Kkt
Restauração Inexata
description In this dissertation, we study Brent’s method to solve systems of equations and their relation with Inexata Restoration methods. Brent’s method solves a non-linear system by dividing it into blocks and considering linearizations of these blocks in each iteration. We reconstruct a proof of a theorem in which are established the conditions so that the point sequence generated by Brent’s method has local quadratic convergence to the system solution. Inexact Restoration methods are developed to solved constrained optimization problems and the have the characteristic of dividing each iteration into two phases. In the first one, they seek to improve viability and, in the second, optimality. So, it is natural to think that Inexact Restoration methods look to solve the KKT system by dividing it into two blocks. For this reason, it seems evident the existence of a relation between Brent’s and Inexact Restoration methods. Considering this, we present a quadratic local convergence result for the point sequences generated by the Inexact Restoration methods, derived from adaptations in the convergence demonstration of Brent’s method. After that, we propose two iterative computational methods for optimization, introducing small modifications in the Inexact Restoration method. We show that these two methods also have quadratic convergence and we discuss possible advantages and disadvantages of each one of them. Finally we briefly comment some ideas about how these methods could be inserted into a scheme with global convergence.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-14
2019-06-19T14:58:13Z
2019-06-19T14:58:13Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5004460
FRANCIS LORENA LARREAL HERRERA.pdf
https://repositorio.unifesp.br/handle/11600/50651
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5004460
https://repositorio.unifesp.br/handle/11600/50651
identifier_str_mv FRANCIS LORENA LARREAL HERRERA.pdf
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 130p.
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268440365498368