Tópicos em condições de otimalidade para otimização não linear

Detalhes bibliográficos
Autor(a) principal: Flor, Jose Alberto Ramos
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/
Resumo: Esta tese é um estudo acerca da análise de convergência de vários métodos numéricos de primeira e de segunda ordem para resolver problemas de programação matemática e as condições de otimalidade associadas. Nossas principais ferramentas são as condições sequenciais de otimalidade. As condições sequenciais de otimalidade oferecem um quadro teórico para a análise de convergência para várias famílias de métodos de primeira ordem sob condições de qualificações fracas. Nesta tese, apresentamos, para cada condição sequencial de otimalidade, a condição de qualificação mínima associada e mostramos as relações com outras condições de qualificação conhecidas. Este fato tem implicações práticas, uma vez que enfraquece as hipóteses requeridas para a convergência de vários métodos numéricos cujos critérios de paradas estão associados às condições sequenciais de otimalidade. Ainda mais, esse tipo de resultado não pode ser melhorado usando outras condições de qualificações. Nós estendemos a noção de condições sequenciais de otimalidade de primeira ordem, para incorporar informações de segunda ordem. Apresentamos, segundo nosso conhecimento, a primeira condição sequencial de otimalidade de segunda ordem, adequada para a análise de convergência de vários métodos numéricos com convergência a pontos estacionários de segunda ordem, como por exemplo métodos baseados no Lagrangeano aumentado, regiões de confiança e SQP regularizado. Associada com a nova condição sequencial de segunda ordem, temos uma nova condição de qualificação, mais fraca que as outras condições de qualificações utilizadas para a análise de convergência para métodos numéricos de segunda ordem. Nós situamos essa nova condição de qualificação com respeito a outras condições de qualificação usadas em análise de convergência. Finalmente apresentamos outra razão pela qual a condição fraca necessária de segunda ordem é a condição de segunda ordem adequada quando lidarmos com a convergência de algoritmos práticos
id USP_d354c0476116cfb01bbd1ce15e637f19
oai_identifier_str oai:teses.usp.br:tde-18102016-101943
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Tópicos em condições de otimalidade para otimização não linearTopics in optimality conditions for nonlinear optimizationApproximate-KKTAproximadamente KKTCondições de otimalidadeCondições de qualificaçãoCondições sequenciaisConstraint qualicationsKKTKKTNonlinear optimizationOptimality conditionsOtimização não-linearSequential optimality conditionEsta tese é um estudo acerca da análise de convergência de vários métodos numéricos de primeira e de segunda ordem para resolver problemas de programação matemática e as condições de otimalidade associadas. Nossas principais ferramentas são as condições sequenciais de otimalidade. As condições sequenciais de otimalidade oferecem um quadro teórico para a análise de convergência para várias famílias de métodos de primeira ordem sob condições de qualificações fracas. Nesta tese, apresentamos, para cada condição sequencial de otimalidade, a condição de qualificação mínima associada e mostramos as relações com outras condições de qualificação conhecidas. Este fato tem implicações práticas, uma vez que enfraquece as hipóteses requeridas para a convergência de vários métodos numéricos cujos critérios de paradas estão associados às condições sequenciais de otimalidade. Ainda mais, esse tipo de resultado não pode ser melhorado usando outras condições de qualificações. Nós estendemos a noção de condições sequenciais de otimalidade de primeira ordem, para incorporar informações de segunda ordem. Apresentamos, segundo nosso conhecimento, a primeira condição sequencial de otimalidade de segunda ordem, adequada para a análise de convergência de vários métodos numéricos com convergência a pontos estacionários de segunda ordem, como por exemplo métodos baseados no Lagrangeano aumentado, regiões de confiança e SQP regularizado. Associada com a nova condição sequencial de segunda ordem, temos uma nova condição de qualificação, mais fraca que as outras condições de qualificações utilizadas para a análise de convergência para métodos numéricos de segunda ordem. Nós situamos essa nova condição de qualificação com respeito a outras condições de qualificação usadas em análise de convergência. Finalmente apresentamos outra razão pela qual a condição fraca necessária de segunda ordem é a condição de segunda ordem adequada quando lidarmos com a convergência de algoritmos práticosThis thesis deals with the convergence analysis for several rst-and-second-order numerical methods used to solve mathematical programming problems. Our main tools are the sequential optimality conditions. First-order sequential optimality conditions oer a framework to the study of the convergence analysis of several families of rst-order methods, under weak constraint qualications. In this thesis, we will introduce, for each sequential optimality condition the minimal constraint qualications associated with it and we will show their relationships with other constraint qualications. This fact has a practical aspect, since, we improve the convergence analysis of practical methods with stopping criteria associated with sequential optimality conditions. This results can not be improved by using another weak constraint qualications. We will extend the notion of rst-order sequential optimality conditions to incorporate secondorder information. We will introduce, to the best of our knowledge, the rst second-order sequential optimality condition, suitable to the study of the convergence analysis of several second-order methods including methods based on the augmented lagrangian, trust-region and regularized SQP. Associated with the second-order sequential optimality condition, we have a new constraint qualication weaker than all constraint qualications used for the convergence analysis of second-order methods. We show the relationships of this new constraint qualications with other constraint qualications used for algorithmic purposes. We will also present a new reason why the weak secondorder necessary condition is the natural second-order condition when we are dealing with practical numerical methodsBiblioteca Digitais de Teses e Dissertações da USPHaeser, GabrielSilva, Paulo José da Silva eFlor, Jose Alberto Ramos2016-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-18102016-101943Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Tópicos em condições de otimalidade para otimização não linear
Topics in optimality conditions for nonlinear optimization
title Tópicos em condições de otimalidade para otimização não linear
spellingShingle Tópicos em condições de otimalidade para otimização não linear
Flor, Jose Alberto Ramos
Approximate-KKT
Aproximadamente KKT
Condições de otimalidade
Condições de qualificação
Condições sequenciais
Constraint qualications
KKT
KKT
Nonlinear optimization
Optimality conditions
Otimização não-linear
Sequential optimality condition
title_short Tópicos em condições de otimalidade para otimização não linear
title_full Tópicos em condições de otimalidade para otimização não linear
title_fullStr Tópicos em condições de otimalidade para otimização não linear
title_full_unstemmed Tópicos em condições de otimalidade para otimização não linear
title_sort Tópicos em condições de otimalidade para otimização não linear
author Flor, Jose Alberto Ramos
author_facet Flor, Jose Alberto Ramos
author_role author
dc.contributor.none.fl_str_mv Haeser, Gabriel
Silva, Paulo José da Silva e
dc.contributor.author.fl_str_mv Flor, Jose Alberto Ramos
dc.subject.por.fl_str_mv Approximate-KKT
Aproximadamente KKT
Condições de otimalidade
Condições de qualificação
Condições sequenciais
Constraint qualications
KKT
KKT
Nonlinear optimization
Optimality conditions
Otimização não-linear
Sequential optimality condition
topic Approximate-KKT
Aproximadamente KKT
Condições de otimalidade
Condições de qualificação
Condições sequenciais
Constraint qualications
KKT
KKT
Nonlinear optimization
Optimality conditions
Otimização não-linear
Sequential optimality condition
description Esta tese é um estudo acerca da análise de convergência de vários métodos numéricos de primeira e de segunda ordem para resolver problemas de programação matemática e as condições de otimalidade associadas. Nossas principais ferramentas são as condições sequenciais de otimalidade. As condições sequenciais de otimalidade oferecem um quadro teórico para a análise de convergência para várias famílias de métodos de primeira ordem sob condições de qualificações fracas. Nesta tese, apresentamos, para cada condição sequencial de otimalidade, a condição de qualificação mínima associada e mostramos as relações com outras condições de qualificação conhecidas. Este fato tem implicações práticas, uma vez que enfraquece as hipóteses requeridas para a convergência de vários métodos numéricos cujos critérios de paradas estão associados às condições sequenciais de otimalidade. Ainda mais, esse tipo de resultado não pode ser melhorado usando outras condições de qualificações. Nós estendemos a noção de condições sequenciais de otimalidade de primeira ordem, para incorporar informações de segunda ordem. Apresentamos, segundo nosso conhecimento, a primeira condição sequencial de otimalidade de segunda ordem, adequada para a análise de convergência de vários métodos numéricos com convergência a pontos estacionários de segunda ordem, como por exemplo métodos baseados no Lagrangeano aumentado, regiões de confiança e SQP regularizado. Associada com a nova condição sequencial de segunda ordem, temos uma nova condição de qualificação, mais fraca que as outras condições de qualificações utilizadas para a análise de convergência para métodos numéricos de segunda ordem. Nós situamos essa nova condição de qualificação com respeito a outras condições de qualificação usadas em análise de convergência. Finalmente apresentamos outra razão pela qual a condição fraca necessária de segunda ordem é a condição de segunda ordem adequada quando lidarmos com a convergência de algoritmos práticos
publishDate 2016
dc.date.none.fl_str_mv 2016-01-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/
url http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257114215448576