Tópicos em condições de otimalidade para otimização não linear
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/ |
Resumo: | Esta tese é um estudo acerca da análise de convergência de vários métodos numéricos de primeira e de segunda ordem para resolver problemas de programação matemática e as condições de otimalidade associadas. Nossas principais ferramentas são as condições sequenciais de otimalidade. As condições sequenciais de otimalidade oferecem um quadro teórico para a análise de convergência para várias famílias de métodos de primeira ordem sob condições de qualificações fracas. Nesta tese, apresentamos, para cada condição sequencial de otimalidade, a condição de qualificação mínima associada e mostramos as relações com outras condições de qualificação conhecidas. Este fato tem implicações práticas, uma vez que enfraquece as hipóteses requeridas para a convergência de vários métodos numéricos cujos critérios de paradas estão associados às condições sequenciais de otimalidade. Ainda mais, esse tipo de resultado não pode ser melhorado usando outras condições de qualificações. Nós estendemos a noção de condições sequenciais de otimalidade de primeira ordem, para incorporar informações de segunda ordem. Apresentamos, segundo nosso conhecimento, a primeira condição sequencial de otimalidade de segunda ordem, adequada para a análise de convergência de vários métodos numéricos com convergência a pontos estacionários de segunda ordem, como por exemplo métodos baseados no Lagrangeano aumentado, regiões de confiança e SQP regularizado. Associada com a nova condição sequencial de segunda ordem, temos uma nova condição de qualificação, mais fraca que as outras condições de qualificações utilizadas para a análise de convergência para métodos numéricos de segunda ordem. Nós situamos essa nova condição de qualificação com respeito a outras condições de qualificação usadas em análise de convergência. Finalmente apresentamos outra razão pela qual a condição fraca necessária de segunda ordem é a condição de segunda ordem adequada quando lidarmos com a convergência de algoritmos práticos |
id |
USP_d354c0476116cfb01bbd1ce15e637f19 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18102016-101943 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Tópicos em condições de otimalidade para otimização não linearTopics in optimality conditions for nonlinear optimizationApproximate-KKTAproximadamente KKTCondições de otimalidadeCondições de qualificaçãoCondições sequenciaisConstraint qualicationsKKTKKTNonlinear optimizationOptimality conditionsOtimização não-linearSequential optimality conditionEsta tese é um estudo acerca da análise de convergência de vários métodos numéricos de primeira e de segunda ordem para resolver problemas de programação matemática e as condições de otimalidade associadas. Nossas principais ferramentas são as condições sequenciais de otimalidade. As condições sequenciais de otimalidade oferecem um quadro teórico para a análise de convergência para várias famílias de métodos de primeira ordem sob condições de qualificações fracas. Nesta tese, apresentamos, para cada condição sequencial de otimalidade, a condição de qualificação mínima associada e mostramos as relações com outras condições de qualificação conhecidas. Este fato tem implicações práticas, uma vez que enfraquece as hipóteses requeridas para a convergência de vários métodos numéricos cujos critérios de paradas estão associados às condições sequenciais de otimalidade. Ainda mais, esse tipo de resultado não pode ser melhorado usando outras condições de qualificações. Nós estendemos a noção de condições sequenciais de otimalidade de primeira ordem, para incorporar informações de segunda ordem. Apresentamos, segundo nosso conhecimento, a primeira condição sequencial de otimalidade de segunda ordem, adequada para a análise de convergência de vários métodos numéricos com convergência a pontos estacionários de segunda ordem, como por exemplo métodos baseados no Lagrangeano aumentado, regiões de confiança e SQP regularizado. Associada com a nova condição sequencial de segunda ordem, temos uma nova condição de qualificação, mais fraca que as outras condições de qualificações utilizadas para a análise de convergência para métodos numéricos de segunda ordem. Nós situamos essa nova condição de qualificação com respeito a outras condições de qualificação usadas em análise de convergência. Finalmente apresentamos outra razão pela qual a condição fraca necessária de segunda ordem é a condição de segunda ordem adequada quando lidarmos com a convergência de algoritmos práticosThis thesis deals with the convergence analysis for several rst-and-second-order numerical methods used to solve mathematical programming problems. Our main tools are the sequential optimality conditions. First-order sequential optimality conditions oer a framework to the study of the convergence analysis of several families of rst-order methods, under weak constraint qualications. In this thesis, we will introduce, for each sequential optimality condition the minimal constraint qualications associated with it and we will show their relationships with other constraint qualications. This fact has a practical aspect, since, we improve the convergence analysis of practical methods with stopping criteria associated with sequential optimality conditions. This results can not be improved by using another weak constraint qualications. We will extend the notion of rst-order sequential optimality conditions to incorporate secondorder information. We will introduce, to the best of our knowledge, the rst second-order sequential optimality condition, suitable to the study of the convergence analysis of several second-order methods including methods based on the augmented lagrangian, trust-region and regularized SQP. Associated with the second-order sequential optimality condition, we have a new constraint qualication weaker than all constraint qualications used for the convergence analysis of second-order methods. We show the relationships of this new constraint qualications with other constraint qualications used for algorithmic purposes. We will also present a new reason why the weak secondorder necessary condition is the natural second-order condition when we are dealing with practical numerical methodsBiblioteca Digitais de Teses e Dissertações da USPHaeser, GabrielSilva, Paulo José da Silva eFlor, Jose Alberto Ramos2016-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-18102016-101943Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Tópicos em condições de otimalidade para otimização não linear Topics in optimality conditions for nonlinear optimization |
title |
Tópicos em condições de otimalidade para otimização não linear |
spellingShingle |
Tópicos em condições de otimalidade para otimização não linear Flor, Jose Alberto Ramos Approximate-KKT Aproximadamente KKT Condições de otimalidade Condições de qualificação Condições sequenciais Constraint qualications KKT KKT Nonlinear optimization Optimality conditions Otimização não-linear Sequential optimality condition |
title_short |
Tópicos em condições de otimalidade para otimização não linear |
title_full |
Tópicos em condições de otimalidade para otimização não linear |
title_fullStr |
Tópicos em condições de otimalidade para otimização não linear |
title_full_unstemmed |
Tópicos em condições de otimalidade para otimização não linear |
title_sort |
Tópicos em condições de otimalidade para otimização não linear |
author |
Flor, Jose Alberto Ramos |
author_facet |
Flor, Jose Alberto Ramos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Haeser, Gabriel Silva, Paulo José da Silva e |
dc.contributor.author.fl_str_mv |
Flor, Jose Alberto Ramos |
dc.subject.por.fl_str_mv |
Approximate-KKT Aproximadamente KKT Condições de otimalidade Condições de qualificação Condições sequenciais Constraint qualications KKT KKT Nonlinear optimization Optimality conditions Otimização não-linear Sequential optimality condition |
topic |
Approximate-KKT Aproximadamente KKT Condições de otimalidade Condições de qualificação Condições sequenciais Constraint qualications KKT KKT Nonlinear optimization Optimality conditions Otimização não-linear Sequential optimality condition |
description |
Esta tese é um estudo acerca da análise de convergência de vários métodos numéricos de primeira e de segunda ordem para resolver problemas de programação matemática e as condições de otimalidade associadas. Nossas principais ferramentas são as condições sequenciais de otimalidade. As condições sequenciais de otimalidade oferecem um quadro teórico para a análise de convergência para várias famílias de métodos de primeira ordem sob condições de qualificações fracas. Nesta tese, apresentamos, para cada condição sequencial de otimalidade, a condição de qualificação mínima associada e mostramos as relações com outras condições de qualificação conhecidas. Este fato tem implicações práticas, uma vez que enfraquece as hipóteses requeridas para a convergência de vários métodos numéricos cujos critérios de paradas estão associados às condições sequenciais de otimalidade. Ainda mais, esse tipo de resultado não pode ser melhorado usando outras condições de qualificações. Nós estendemos a noção de condições sequenciais de otimalidade de primeira ordem, para incorporar informações de segunda ordem. Apresentamos, segundo nosso conhecimento, a primeira condição sequencial de otimalidade de segunda ordem, adequada para a análise de convergência de vários métodos numéricos com convergência a pontos estacionários de segunda ordem, como por exemplo métodos baseados no Lagrangeano aumentado, regiões de confiança e SQP regularizado. Associada com a nova condição sequencial de segunda ordem, temos uma nova condição de qualificação, mais fraca que as outras condições de qualificações utilizadas para a análise de convergência para métodos numéricos de segunda ordem. Nós situamos essa nova condição de qualificação com respeito a outras condições de qualificação usadas em análise de convergência. Finalmente apresentamos outra razão pela qual a condição fraca necessária de segunda ordem é a condição de segunda ordem adequada quando lidarmos com a convergência de algoritmos práticos |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-18102016-101943/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257114215448576 |