Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2017.05.074 https://repositorio.unifesp.br/handle/11600/58173 |
Resumo: | A generalization of the logistic map is considered, showing two control parameters a and,8 that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter omega = 2/q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point R-c where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X = X-max, = 1. When it occurs, the trajectory is mapped to a fixed point at X = 0. We show that there exist a general recursive formula for initial conditions that lead to X = X-max. 2017 Elsevier B.V. All rights reserved. |
id |
UFSP_555426852d2ef9d2a216eb4376d5b22a |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/58173 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Route to chaos and some properties in the boundary crisis of a generalized logistic mappingBoundary crisisFeigenbaum universalityGeneralized logistic mappingA generalization of the logistic map is considered, showing two control parameters a and,8 that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter omega = 2/q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point R-c where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X = X-max, = 1. When it occurs, the trajectory is mapped to a fixed point at X = 0. We show that there exist a general recursive formula for initial conditions that lead to X = X-max. 2017 Elsevier B.V. All rights reserved.UNESP Univ Estadual Paulista, Dept Fis, Av 24A,1515, BR-13506900 Rio Claro, SP, BrazilUNIFESP Univ Fed Sao Paulo, Dept Ciencias Exatas & Terra, Rua Sao Nicolau,210 Ctr, BR-09913030 Diadema, SP, BrazilUNIFESP Univ Fed Sao Paulo, Dept Ciencias Exatas & Terra, Rua Sao Nicolau,210 Ctr, BR-09913030 Diadema, SP, BrazilWeb of ScienceCenter for Scientific Computing (NCC/GridUNESP) of the Sao Paulo State University (UNESP)Elsevier Science Bv2020-09-01T13:21:17Z2020-09-01T13:21:17Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion674-680http://dx.doi.org/10.1016/j.physa.2017.05.074Physica A-Statistical Mechanics And Its Applications. Amsterdam, v. 486, p. 674-680, 2017.10.1016/j.physa.2017.05.0740378-4371https://repositorio.unifesp.br/handle/11600/58173WOS:000406988000056engPhysica A-Statistical Mechanics And Its ApplicationsAmsterdaminfo:eu-repo/semantics/openAccessda Costa, Diogo RicardoMedrano-T, Rene O. [UNIFESP]Leonel, Edson Denisreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2021-09-28T16:45:40Zoai:repositorio.unifesp.br/:11600/58173Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652021-09-28T16:45:40Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
spellingShingle |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping da Costa, Diogo Ricardo Boundary crisis Feigenbaum universality Generalized logistic mapping |
title_short |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_full |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_fullStr |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_full_unstemmed |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_sort |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
author |
da Costa, Diogo Ricardo |
author_facet |
da Costa, Diogo Ricardo Medrano-T, Rene O. [UNIFESP] Leonel, Edson Denis |
author_role |
author |
author2 |
Medrano-T, Rene O. [UNIFESP] Leonel, Edson Denis |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
da Costa, Diogo Ricardo Medrano-T, Rene O. [UNIFESP] Leonel, Edson Denis |
dc.subject.por.fl_str_mv |
Boundary crisis Feigenbaum universality Generalized logistic mapping |
topic |
Boundary crisis Feigenbaum universality Generalized logistic mapping |
description |
A generalization of the logistic map is considered, showing two control parameters a and,8 that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter omega = 2/q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point R-c where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X = X-max, = 1. When it occurs, the trajectory is mapped to a fixed point at X = 0. We show that there exist a general recursive formula for initial conditions that lead to X = X-max. 2017 Elsevier B.V. All rights reserved. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2020-09-01T13:21:17Z 2020-09-01T13:21:17Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2017.05.074 Physica A-Statistical Mechanics And Its Applications. Amsterdam, v. 486, p. 674-680, 2017. 10.1016/j.physa.2017.05.074 0378-4371 https://repositorio.unifesp.br/handle/11600/58173 WOS:000406988000056 |
url |
http://dx.doi.org/10.1016/j.physa.2017.05.074 https://repositorio.unifesp.br/handle/11600/58173 |
identifier_str_mv |
Physica A-Statistical Mechanics And Its Applications. Amsterdam, v. 486, p. 674-680, 2017. 10.1016/j.physa.2017.05.074 0378-4371 WOS:000406988000056 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A-Statistical Mechanics And Its Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
674-680 |
dc.coverage.none.fl_str_mv |
Amsterdam |
dc.publisher.none.fl_str_mv |
Elsevier Science Bv |
publisher.none.fl_str_mv |
Elsevier Science Bv |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268320426229760 |