Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2017.05.074 http://hdl.handle.net/11449/174771 |
Resumo: | A generalization of the logistic map is considered, showing two control parameters α and β that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter ω=2∕q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point Rc where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X=Xmax=1. When it occurs, the trajectory is mapped to a fixed point at X=0. We show that there exist a general recursive formula for initial conditions that lead to X=Xmax. |
id |
UNSP_fcde3cbe080fe344626849d94a5803fb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174771 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Route to chaos and some properties in the boundary crisis of a generalized logistic mappingBoundary crisisFeigenbaum universalityGeneralized logistic mappingA generalization of the logistic map is considered, showing two control parameters α and β that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter ω=2∕q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point Rc where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X=Xmax=1. When it occurs, the trajectory is mapped to a fixed point at X=0. We show that there exist a general recursive formula for initial conditions that lead to X=Xmax.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Física UNESP — University Estadual Paulista, Av.24A, 1515 - 13506-900 - Rio Claro - SPDepartamento de Ciências Exatas e da Terra UNIFESP — University Federal de São Paulo - Rua São Nicolau, 210, CentroDepartamento de Física UNESP — University Estadual Paulista, Av.24A, 1515 - 13506-900 - Rio Claro - SPFAPESP: 2013/22764-2Universidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)da Costa, Diogo Ricardo [UNESP]Medrano-T, Rene O.Leonel, Edson Denis [UNESP]2018-12-11T17:12:47Z2018-12-11T17:12:47Z2017-11-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article674-680application/pdfhttp://dx.doi.org/10.1016/j.physa.2017.05.074Physica A: Statistical Mechanics and its Applications, v. 486, p. 674-680.0378-4371http://hdl.handle.net/11449/17477110.1016/j.physa.2017.05.0742-s2.0-850208794192-s2.0-85020879419.pdf61306442327186100000-0001-8224-3329Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and its Applications0,773info:eu-repo/semantics/openAccess2023-11-15T06:14:18Zoai:repositorio.unesp.br:11449/174771Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:45:22.595562Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
spellingShingle |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping da Costa, Diogo Ricardo [UNESP] Boundary crisis Feigenbaum universality Generalized logistic mapping |
title_short |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_full |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_fullStr |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_full_unstemmed |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
title_sort |
Route to chaos and some properties in the boundary crisis of a generalized logistic mapping |
author |
da Costa, Diogo Ricardo [UNESP] |
author_facet |
da Costa, Diogo Ricardo [UNESP] Medrano-T, Rene O. Leonel, Edson Denis [UNESP] |
author_role |
author |
author2 |
Medrano-T, Rene O. Leonel, Edson Denis [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Paulo (UNIFESP) |
dc.contributor.author.fl_str_mv |
da Costa, Diogo Ricardo [UNESP] Medrano-T, Rene O. Leonel, Edson Denis [UNESP] |
dc.subject.por.fl_str_mv |
Boundary crisis Feigenbaum universality Generalized logistic mapping |
topic |
Boundary crisis Feigenbaum universality Generalized logistic mapping |
description |
A generalization of the logistic map is considered, showing two control parameters α and β that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter ω=2∕q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point Rc where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X=Xmax=1. When it occurs, the trajectory is mapped to a fixed point at X=0. We show that there exist a general recursive formula for initial conditions that lead to X=Xmax. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-15 2018-12-11T17:12:47Z 2018-12-11T17:12:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2017.05.074 Physica A: Statistical Mechanics and its Applications, v. 486, p. 674-680. 0378-4371 http://hdl.handle.net/11449/174771 10.1016/j.physa.2017.05.074 2-s2.0-85020879419 2-s2.0-85020879419.pdf 6130644232718610 0000-0001-8224-3329 |
url |
http://dx.doi.org/10.1016/j.physa.2017.05.074 http://hdl.handle.net/11449/174771 |
identifier_str_mv |
Physica A: Statistical Mechanics and its Applications, v. 486, p. 674-680. 0378-4371 10.1016/j.physa.2017.05.074 2-s2.0-85020879419 2-s2.0-85020879419.pdf 6130644232718610 0000-0001-8224-3329 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A: Statistical Mechanics and its Applications 0,773 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
674-680 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128853967634432 |