Route to chaos and some properties in the boundary crisis of a generalized logistic mapping

Detalhes bibliográficos
Autor(a) principal: da Costa, Diogo Ricardo [UNESP]
Data de Publicação: 2017
Outros Autores: Medrano-T, Rene O., Leonel, Edson Denis [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physa.2017.05.074
http://hdl.handle.net/11449/174771
Resumo: A generalization of the logistic map is considered, showing two control parameters α and β that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter ω=2∕q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point Rc where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X=Xmax=1. When it occurs, the trajectory is mapped to a fixed point at X=0. We show that there exist a general recursive formula for initial conditions that lead to X=Xmax.
id UNSP_fcde3cbe080fe344626849d94a5803fb
oai_identifier_str oai:repositorio.unesp.br:11449/174771
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Route to chaos and some properties in the boundary crisis of a generalized logistic mappingBoundary crisisFeigenbaum universalityGeneralized logistic mappingA generalization of the logistic map is considered, showing two control parameters α and β that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter ω=2∕q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point Rc where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X=Xmax=1. When it occurs, the trajectory is mapped to a fixed point at X=0. We show that there exist a general recursive formula for initial conditions that lead to X=Xmax.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Física UNESP — University Estadual Paulista, Av.24A, 1515 - 13506-900 - Rio Claro - SPDepartamento de Ciências Exatas e da Terra UNIFESP — University Federal de São Paulo - Rua São Nicolau, 210, CentroDepartamento de Física UNESP — University Estadual Paulista, Av.24A, 1515 - 13506-900 - Rio Claro - SPFAPESP: 2013/22764-2Universidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)da Costa, Diogo Ricardo [UNESP]Medrano-T, Rene O.Leonel, Edson Denis [UNESP]2018-12-11T17:12:47Z2018-12-11T17:12:47Z2017-11-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article674-680application/pdfhttp://dx.doi.org/10.1016/j.physa.2017.05.074Physica A: Statistical Mechanics and its Applications, v. 486, p. 674-680.0378-4371http://hdl.handle.net/11449/17477110.1016/j.physa.2017.05.0742-s2.0-850208794192-s2.0-85020879419.pdf61306442327186100000-0001-8224-3329Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A: Statistical Mechanics and its Applications0,773info:eu-repo/semantics/openAccess2023-11-15T06:14:18Zoai:repositorio.unesp.br:11449/174771Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:45:22.595562Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
title Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
spellingShingle Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
da Costa, Diogo Ricardo [UNESP]
Boundary crisis
Feigenbaum universality
Generalized logistic mapping
title_short Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
title_full Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
title_fullStr Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
title_full_unstemmed Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
title_sort Route to chaos and some properties in the boundary crisis of a generalized logistic mapping
author da Costa, Diogo Ricardo [UNESP]
author_facet da Costa, Diogo Ricardo [UNESP]
Medrano-T, Rene O.
Leonel, Edson Denis [UNESP]
author_role author
author2 Medrano-T, Rene O.
Leonel, Edson Denis [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv da Costa, Diogo Ricardo [UNESP]
Medrano-T, Rene O.
Leonel, Edson Denis [UNESP]
dc.subject.por.fl_str_mv Boundary crisis
Feigenbaum universality
Generalized logistic mapping
topic Boundary crisis
Feigenbaum universality
Generalized logistic mapping
description A generalization of the logistic map is considered, showing two control parameters α and β that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter ω=2∕q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point Rc where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X=Xmax=1. When it occurs, the trajectory is mapped to a fixed point at X=0. We show that there exist a general recursive formula for initial conditions that lead to X=Xmax.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-15
2018-12-11T17:12:47Z
2018-12-11T17:12:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physa.2017.05.074
Physica A: Statistical Mechanics and its Applications, v. 486, p. 674-680.
0378-4371
http://hdl.handle.net/11449/174771
10.1016/j.physa.2017.05.074
2-s2.0-85020879419
2-s2.0-85020879419.pdf
6130644232718610
0000-0001-8224-3329
url http://dx.doi.org/10.1016/j.physa.2017.05.074
http://hdl.handle.net/11449/174771
identifier_str_mv Physica A: Statistical Mechanics and its Applications, v. 486, p. 674-680.
0378-4371
10.1016/j.physa.2017.05.074
2-s2.0-85020879419
2-s2.0-85020879419.pdf
6130644232718610
0000-0001-8224-3329
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica A: Statistical Mechanics and its Applications
0,773
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 674-680
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128853967634432