The NoiseFiltersR Package: Label Noise Preprocessing in R
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | https://journal.r-project.org/archive/2017/RJ-2017-027/index.html https://repositorio.unifesp.br/handle/11600/53705 |
Resumo: | In Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods. |
id |
UFSP_6ada073e1980405630b58645ba598bab |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/53705 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
The NoiseFiltersR Package: Label Noise Preprocessing in RIn Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods.Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, SpainUniv Sao Paulo, Inst Ciencias Matemat & Comp, Trabalhador Sao Carlense Av 400, BR-13560970 Sao Carlos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Talim St 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Talim St 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilWeb of ScienceSpanish Research ProjectAndalusian Research PlanBrazilian grant-CeMEAI-FAPESPFAPESPSpanish Research Project: TIN2014-57251-PAndalusian Research Plan: P11-TIC-7765CeMEAI-FAPESP: 2013/07375-0FAPESP: 2012/22608-8FAPESP: 2011/14602-7R Foundation Statistical Computing2020-06-26T16:30:42Z2020-06-26T16:30:42Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion219-228application/pdfhttps://journal.r-project.org/archive/2017/RJ-2017-027/index.htmlR Journal. Wien, v. 9, n. 1, p. 219-228, 2017.WOS000404756200015.pdf2073-4859https://repositorio.unifesp.br/handle/11600/53705WOS:000404756200015engR JournalWieninfo:eu-repo/semantics/openAccessMorales, PabloLuengo, JulianGarcia, Luis P. F.Lorena, Ana C. [UNIFESP]de Carvalho, Andre C. P. L. F.Herrera, Franciscoreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-03T04:17:58Zoai:repositorio.unifesp.br/:11600/53705Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-03T04:17:58Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
title |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
spellingShingle |
The NoiseFiltersR Package: Label Noise Preprocessing in R Morales, Pablo |
title_short |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
title_full |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
title_fullStr |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
title_full_unstemmed |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
title_sort |
The NoiseFiltersR Package: Label Noise Preprocessing in R |
author |
Morales, Pablo |
author_facet |
Morales, Pablo Luengo, Julian Garcia, Luis P. F. Lorena, Ana C. [UNIFESP] de Carvalho, Andre C. P. L. F. Herrera, Francisco |
author_role |
author |
author2 |
Luengo, Julian Garcia, Luis P. F. Lorena, Ana C. [UNIFESP] de Carvalho, Andre C. P. L. F. Herrera, Francisco |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Morales, Pablo Luengo, Julian Garcia, Luis P. F. Lorena, Ana C. [UNIFESP] de Carvalho, Andre C. P. L. F. Herrera, Francisco |
description |
In Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2020-06-26T16:30:42Z 2020-06-26T16:30:42Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://journal.r-project.org/archive/2017/RJ-2017-027/index.html R Journal. Wien, v. 9, n. 1, p. 219-228, 2017. WOS000404756200015.pdf 2073-4859 https://repositorio.unifesp.br/handle/11600/53705 WOS:000404756200015 |
url |
https://journal.r-project.org/archive/2017/RJ-2017-027/index.html https://repositorio.unifesp.br/handle/11600/53705 |
identifier_str_mv |
R Journal. Wien, v. 9, n. 1, p. 219-228, 2017. WOS000404756200015.pdf 2073-4859 WOS:000404756200015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
R Journal |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
219-228 application/pdf |
dc.coverage.none.fl_str_mv |
Wien |
dc.publisher.none.fl_str_mv |
R Foundation Statistical Computing |
publisher.none.fl_str_mv |
R Foundation Statistical Computing |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268447027101696 |