The NoiseFiltersR Package: Label Noise Preprocessing in R

Detalhes bibliográficos
Autor(a) principal: Morales, Pablo
Data de Publicação: 2017
Outros Autores: Luengo, Julian, Garcia, Luis P. F., Lorena, Ana C. [UNIFESP], de Carvalho, Andre C. P. L. F., Herrera, Francisco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://journal.r-project.org/archive/2017/RJ-2017-027/index.html
https://repositorio.unifesp.br/handle/11600/53705
Resumo: In Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods.
id UFSP_6ada073e1980405630b58645ba598bab
oai_identifier_str oai:repositorio.unifesp.br/:11600/53705
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling The NoiseFiltersR Package: Label Noise Preprocessing in RIn Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods.Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, SpainUniv Sao Paulo, Inst Ciencias Matemat & Comp, Trabalhador Sao Carlense Av 400, BR-13560970 Sao Carlos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Talim St 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Talim St 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilWeb of ScienceSpanish Research ProjectAndalusian Research PlanBrazilian grant-CeMEAI-FAPESPFAPESPSpanish Research Project: TIN2014-57251-PAndalusian Research Plan: P11-TIC-7765CeMEAI-FAPESP: 2013/07375-0FAPESP: 2012/22608-8FAPESP: 2011/14602-7R Foundation Statistical Computing2020-06-26T16:30:42Z2020-06-26T16:30:42Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion219-228application/pdfhttps://journal.r-project.org/archive/2017/RJ-2017-027/index.htmlR Journal. Wien, v. 9, n. 1, p. 219-228, 2017.WOS000404756200015.pdf2073-4859https://repositorio.unifesp.br/handle/11600/53705WOS:000404756200015engR JournalWieninfo:eu-repo/semantics/openAccessMorales, PabloLuengo, JulianGarcia, Luis P. F.Lorena, Ana C. [UNIFESP]de Carvalho, Andre C. P. L. F.Herrera, Franciscoreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-03T04:17:58Zoai:repositorio.unifesp.br/:11600/53705Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-03T04:17:58Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv The NoiseFiltersR Package: Label Noise Preprocessing in R
title The NoiseFiltersR Package: Label Noise Preprocessing in R
spellingShingle The NoiseFiltersR Package: Label Noise Preprocessing in R
Morales, Pablo
title_short The NoiseFiltersR Package: Label Noise Preprocessing in R
title_full The NoiseFiltersR Package: Label Noise Preprocessing in R
title_fullStr The NoiseFiltersR Package: Label Noise Preprocessing in R
title_full_unstemmed The NoiseFiltersR Package: Label Noise Preprocessing in R
title_sort The NoiseFiltersR Package: Label Noise Preprocessing in R
author Morales, Pablo
author_facet Morales, Pablo
Luengo, Julian
Garcia, Luis P. F.
Lorena, Ana C. [UNIFESP]
de Carvalho, Andre C. P. L. F.
Herrera, Francisco
author_role author
author2 Luengo, Julian
Garcia, Luis P. F.
Lorena, Ana C. [UNIFESP]
de Carvalho, Andre C. P. L. F.
Herrera, Francisco
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Morales, Pablo
Luengo, Julian
Garcia, Luis P. F.
Lorena, Ana C. [UNIFESP]
de Carvalho, Andre C. P. L. F.
Herrera, Francisco
description In Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods.
publishDate 2017
dc.date.none.fl_str_mv 2017
2020-06-26T16:30:42Z
2020-06-26T16:30:42Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://journal.r-project.org/archive/2017/RJ-2017-027/index.html
R Journal. Wien, v. 9, n. 1, p. 219-228, 2017.
WOS000404756200015.pdf
2073-4859
https://repositorio.unifesp.br/handle/11600/53705
WOS:000404756200015
url https://journal.r-project.org/archive/2017/RJ-2017-027/index.html
https://repositorio.unifesp.br/handle/11600/53705
identifier_str_mv R Journal. Wien, v. 9, n. 1, p. 219-228, 2017.
WOS000404756200015.pdf
2073-4859
WOS:000404756200015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv R Journal
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 219-228
application/pdf
dc.coverage.none.fl_str_mv Wien
dc.publisher.none.fl_str_mv R Foundation Statistical Computing
publisher.none.fl_str_mv R Foundation Statistical Computing
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268447027101696