Astrogliosis across models: 3D printing and in vivo implantation

Detalhes bibliográficos
Autor(a) principal: Cruz, Elisa Marozzi [UNIFESP]
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://hdl.handle.net/11600/71625
Resumo: Brain injuries are a significant public health issue due to their personal and socioeconomic impacts. The recovery of affected individuals is reduced because the neurogenic potential of the adult Central Nervous System (CNS) is limited. Therefore, identifying potential targets for the recovery and regeneration of injured nervous tissue is necessary. In this scenario, non-neuronal cells, such as astrocytes, present a promising alternative for the treatment of brain injuries. Astrocytes are glial cells in the CNS that perform various functions in neural homeostasis and pathology. CNS injuries induce astrocyte activation, initiating a process known as astrogliosis, leading to changes in astrocyte morphology, gene expression, and functions. Populations of reactive astrocytes can dedifferentiate, acquiring a neural stem cell phenotype with the potential to generate new neurons. In vitro studies of neuron co-culture with astrocytes show that astrocytes are important for neuronal maturation and survival. Cell cultures have traditionally been performed in a two-dimensional (2D) environment, but three-dimensional (3D) cultures are recognised to offer an environment with structural and biomechanical characteristics that mimic natural tissue. In the last decade, 3D printing has become an important tool in the fabrication of 3D constructs composed of bioinks to encapsulate living cells, better mimicking the natural microenvironment. This study aimed to evaluate the neurogenic potential of primary murine cortical astrocytes in 3D constructs generated by extrusion bioprinting and to assess the neurotrophic support provided by these cells to neurons derived from H9 cells. Additionally, the effect of astrocytes on brain injury healing was evaluated by implanting 3D constructs generated by microfluidics into the cortex of mice subjected to a traumatic brain injury model. The results indicate that, under specific signalling influence, bioprinted astrocytes express SOX2, indicating the acquisition of a less differentiated phenotype. The cultivation of dedifferentiated astrocytes in the presence of neurotrophic factors causes the appearance of cells positive for TUJ1 and MAP2 with characteristic neuronal morphology, earlier than in the control group. In 2D cultures, when cultivated in the presence of astrocytes, neural progenitor cells derived from H9 cells (neural progenitors, NPCs) show accelerated maturation and acquisition of cortical layer neuron identity, concomitant with the decrease in the neurogenic potential of NPCs compared to the control group. In 3D constructs fabricated by microfluidics, astrocytes seem to increase NPC survival, which could be implanted into xiii the cortex of mice after traumatic brain injury induction. Animals implanted with astrocyte and NPC co-culture constructs showed significantly smaller glial scars on the brain surface, as well as a reduction in the total lesion area. In conclusion, the results presented in this thesis indicate the importance of astrocytes for maintaining neuronal health and supporting maturation in 2D and 3D neuronal cultures, as well as their therapeutic potential, both in activating the neurogenic potential of the adult CNS through their reactive response and in their role in healing injuries in vivo models of traumatic brain injury.
id UFSP_8deba95fc353ce06098ba0bb0e1c18c5
oai_identifier_str oai:repositorio.unifesp.br/:11600/71625
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Astrogliosis across models: 3D printing and in vivo implantationAstrogliosis3D bioprintingNeurogenesisTraumatic Brain InjuryAstroglioseImpressão 3DNeurogêneseLesão traumática cerebralBrain injuries are a significant public health issue due to their personal and socioeconomic impacts. The recovery of affected individuals is reduced because the neurogenic potential of the adult Central Nervous System (CNS) is limited. Therefore, identifying potential targets for the recovery and regeneration of injured nervous tissue is necessary. In this scenario, non-neuronal cells, such as astrocytes, present a promising alternative for the treatment of brain injuries. Astrocytes are glial cells in the CNS that perform various functions in neural homeostasis and pathology. CNS injuries induce astrocyte activation, initiating a process known as astrogliosis, leading to changes in astrocyte morphology, gene expression, and functions. Populations of reactive astrocytes can dedifferentiate, acquiring a neural stem cell phenotype with the potential to generate new neurons. In vitro studies of neuron co-culture with astrocytes show that astrocytes are important for neuronal maturation and survival. Cell cultures have traditionally been performed in a two-dimensional (2D) environment, but three-dimensional (3D) cultures are recognised to offer an environment with structural and biomechanical characteristics that mimic natural tissue. In the last decade, 3D printing has become an important tool in the fabrication of 3D constructs composed of bioinks to encapsulate living cells, better mimicking the natural microenvironment. This study aimed to evaluate the neurogenic potential of primary murine cortical astrocytes in 3D constructs generated by extrusion bioprinting and to assess the neurotrophic support provided by these cells to neurons derived from H9 cells. Additionally, the effect of astrocytes on brain injury healing was evaluated by implanting 3D constructs generated by microfluidics into the cortex of mice subjected to a traumatic brain injury model. The results indicate that, under specific signalling influence, bioprinted astrocytes express SOX2, indicating the acquisition of a less differentiated phenotype. The cultivation of dedifferentiated astrocytes in the presence of neurotrophic factors causes the appearance of cells positive for TUJ1 and MAP2 with characteristic neuronal morphology, earlier than in the control group. In 2D cultures, when cultivated in the presence of astrocytes, neural progenitor cells derived from H9 cells (neural progenitors, NPCs) show accelerated maturation and acquisition of cortical layer neuron identity, concomitant with the decrease in the neurogenic potential of NPCs compared to the control group. In 3D constructs fabricated by microfluidics, astrocytes seem to increase NPC survival, which could be implanted into xiii the cortex of mice after traumatic brain injury induction. Animals implanted with astrocyte and NPC co-culture constructs showed significantly smaller glial scars on the brain surface, as well as a reduction in the total lesion area. In conclusion, the results presented in this thesis indicate the importance of astrocytes for maintaining neuronal health and supporting maturation in 2D and 3D neuronal cultures, as well as their therapeutic potential, both in activating the neurogenic potential of the adult CNS through their reactive response and in their role in healing injuries in vivo models of traumatic brain injury. Lesões cerebrais são um problema de saúde pública significativo devido aos seus impactos pessoais e socioeconômicos. A recuperação de indivíduos afetados é reduzida, pois o potencial neurogênico do Sistema Nervoso Central (SNC) adulto é limitado. Portanto, a identificação de alvos potenciais para recuperação e regeneração do tecido nervoso lesionado é necessária. Nesse cenário, células não neurais, como astrócitos, apresentam uma alternativa promissora para o tratamento de lesões cerebrais. Astrócitos são células gliais presentes no SNC que exercem uma variedade de funções na homeostase e patologia neural. Lesões no SNC induzem a ativação de astrócitos ativando um processo conhecido como astrogliose, ocasionando alterações na morfologia, expressão gênica e funções dos astrócitos. Populações de astrócitos reativos podem se desdiferenciar, adquirindo um fenótipo de célulatronco neural com potencial para gerar novos neurônios. Estudos in vitro de cocultura de neurônios com astrócitos mostram que astrócitos são importantes para a maturação e sobrevivência neuronal. Cultura de células tem sido tradicionalmente realizadas em ambiente bidimensional (2D), porém culturas tridimensionais (3D) reconhecidamente oferecem um ambiente com características estruturais e biomecânicas que mimetizam o tecido natural. Na última década, a impressão 3D tornouse uma ferramenta importante na fabricação de construtos 3D compostos de biotintas para encapsular células vivas e que melhor mimetiza o microambiente natural. O objetivo deste estudo foi avaliar o potencial neurogênico de astrócitos corticais murinos primários em construtos 3D gerados por bioimpressão por extrusão e avaliar o suporte neurotrófico fornecido por essas células a neurônios derivados de células H9. Além disso, o efeito dos astrócitos na cicatrização de lesões cerebrais foi avaliado pela implantação de construtos 3D gerados por microfluídica no córtex de camundongos submetidos a um modelo de lesão cerebral traumática. Os resultados indicam que, sob influência de sinalização específica, astrócitos bioimpressos expressam SOX2, indicando a aquisição de fenótipo menos diferenciado. O cultivo de astrócitos desdiferenciados na presença de fatores neurotróficos causa o aparecimento de células positivas para TUJ1 e MAP2 com morfologia neuronal característica, mais cedo do que no grupo controle. Em culturas 2D, quando cultivadas na presença de astrócitos, células progenitoras neurais derivadas de células H9 (neuroprogenitores, NPCs) apresentam maturação acelerada e aquisição de identidade de neurônio da camada cortical, concomitante com a diminuição no potencial neurogênico dos NPCs em comparação com o grupo controle. Em construtos 3D fabricados por microfluídica, astrócitos parecem aumentar a sobrevivência de NPCs, que poderiam ser implantados no córtex de camundongos após indução de lesão cerebral traumática. Animais implantados com construtos de cocultura de astrócitos com NPCs apresentaram cicatrizes gliais significativamente menores na superfície do cérebro, bem como uma redução da área total da lesão. Em conclusão, os resultados apresentados nesta tese indicam a importância dos astrócitos para a manutenção da saúde neuronal e apoio à maturação em culturas neuronais 2D e 3D, bem como seu potencial terapêutico, tanto como forma de ativar o potencial neurogênico do SNC adulto por sua resposta reativa quanto pelo seu papel na cicatrização de lesões em modelos in vivo de traumatismo cranioencefálico.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2020/12454-0Universidade Federal de São PauloPorcionatto, Marimelia Aparecida [UNIFESP]http://lattes.cnpq.br/6155537170968904https://lattes.cnpq.br/2452350680651768Cruz, Elisa Marozzi [UNIFESP]2024-08-20T18:03:02Z2024-08-20T18:03:02Z2024-06-28info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersion112 f.application/pdfCRUZ, Elisa Marozz. Astrogliosis across models: 3D printing and in vivo implantation. 2024. 112 f. Tese (Doutorado em Biologia Molecular) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP). São Paulo, 2024.https://hdl.handle.net/11600/71625engSao Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-21T16:25:11Zoai:repositorio.unifesp.br/:11600/71625Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-21T16:25:11Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Astrogliosis across models: 3D printing and in vivo implantation
title Astrogliosis across models: 3D printing and in vivo implantation
spellingShingle Astrogliosis across models: 3D printing and in vivo implantation
Cruz, Elisa Marozzi [UNIFESP]
Astrogliosis
3D bioprinting
Neurogenesis
Traumatic Brain Injury
Astrogliose
Impressão 3D
Neurogênese
Lesão traumática cerebral
title_short Astrogliosis across models: 3D printing and in vivo implantation
title_full Astrogliosis across models: 3D printing and in vivo implantation
title_fullStr Astrogliosis across models: 3D printing and in vivo implantation
title_full_unstemmed Astrogliosis across models: 3D printing and in vivo implantation
title_sort Astrogliosis across models: 3D printing and in vivo implantation
author Cruz, Elisa Marozzi [UNIFESP]
author_facet Cruz, Elisa Marozzi [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Porcionatto, Marimelia Aparecida [UNIFESP]
http://lattes.cnpq.br/6155537170968904
https://lattes.cnpq.br/2452350680651768
dc.contributor.author.fl_str_mv Cruz, Elisa Marozzi [UNIFESP]
dc.subject.por.fl_str_mv Astrogliosis
3D bioprinting
Neurogenesis
Traumatic Brain Injury
Astrogliose
Impressão 3D
Neurogênese
Lesão traumática cerebral
topic Astrogliosis
3D bioprinting
Neurogenesis
Traumatic Brain Injury
Astrogliose
Impressão 3D
Neurogênese
Lesão traumática cerebral
description Brain injuries are a significant public health issue due to their personal and socioeconomic impacts. The recovery of affected individuals is reduced because the neurogenic potential of the adult Central Nervous System (CNS) is limited. Therefore, identifying potential targets for the recovery and regeneration of injured nervous tissue is necessary. In this scenario, non-neuronal cells, such as astrocytes, present a promising alternative for the treatment of brain injuries. Astrocytes are glial cells in the CNS that perform various functions in neural homeostasis and pathology. CNS injuries induce astrocyte activation, initiating a process known as astrogliosis, leading to changes in astrocyte morphology, gene expression, and functions. Populations of reactive astrocytes can dedifferentiate, acquiring a neural stem cell phenotype with the potential to generate new neurons. In vitro studies of neuron co-culture with astrocytes show that astrocytes are important for neuronal maturation and survival. Cell cultures have traditionally been performed in a two-dimensional (2D) environment, but three-dimensional (3D) cultures are recognised to offer an environment with structural and biomechanical characteristics that mimic natural tissue. In the last decade, 3D printing has become an important tool in the fabrication of 3D constructs composed of bioinks to encapsulate living cells, better mimicking the natural microenvironment. This study aimed to evaluate the neurogenic potential of primary murine cortical astrocytes in 3D constructs generated by extrusion bioprinting and to assess the neurotrophic support provided by these cells to neurons derived from H9 cells. Additionally, the effect of astrocytes on brain injury healing was evaluated by implanting 3D constructs generated by microfluidics into the cortex of mice subjected to a traumatic brain injury model. The results indicate that, under specific signalling influence, bioprinted astrocytes express SOX2, indicating the acquisition of a less differentiated phenotype. The cultivation of dedifferentiated astrocytes in the presence of neurotrophic factors causes the appearance of cells positive for TUJ1 and MAP2 with characteristic neuronal morphology, earlier than in the control group. In 2D cultures, when cultivated in the presence of astrocytes, neural progenitor cells derived from H9 cells (neural progenitors, NPCs) show accelerated maturation and acquisition of cortical layer neuron identity, concomitant with the decrease in the neurogenic potential of NPCs compared to the control group. In 3D constructs fabricated by microfluidics, astrocytes seem to increase NPC survival, which could be implanted into xiii the cortex of mice after traumatic brain injury induction. Animals implanted with astrocyte and NPC co-culture constructs showed significantly smaller glial scars on the brain surface, as well as a reduction in the total lesion area. In conclusion, the results presented in this thesis indicate the importance of astrocytes for maintaining neuronal health and supporting maturation in 2D and 3D neuronal cultures, as well as their therapeutic potential, both in activating the neurogenic potential of the adult CNS through their reactive response and in their role in healing injuries in vivo models of traumatic brain injury.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-20T18:03:02Z
2024-08-20T18:03:02Z
2024-06-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CRUZ, Elisa Marozz. Astrogliosis across models: 3D printing and in vivo implantation. 2024. 112 f. Tese (Doutorado em Biologia Molecular) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP). São Paulo, 2024.
https://hdl.handle.net/11600/71625
identifier_str_mv CRUZ, Elisa Marozz. Astrogliosis across models: 3D printing and in vivo implantation. 2024. 112 f. Tese (Doutorado em Biologia Molecular) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP). São Paulo, 2024.
url https://hdl.handle.net/11600/71625
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 112 f.
application/pdf
dc.coverage.none.fl_str_mv Sao Paulo
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo
publisher.none.fl_str_mv Universidade Federal de São Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268409675776000