Application of an iterative method and an evolutionary algorithm in fuzzy optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
dARK ID: | ark:/48912/0013000012txw |
Texto Completo: | http://dx.doi.org/10.1590/S0101-74382012005000018 http://repositorio.unifesp.br/handle/11600/7250 |
Resumo: | This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. |
id |
UFSP_cd3032539e904200357507971303b16c |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/7250 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Application of an iterative method and an evolutionary algorithm in fuzzy optimizationfuzzy numberscut levelsfuzzy optimizationgenetic algorithmsThis work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain.Federal University of São Paulo Institute of Science and TechnologySão Paulo State University Environmental Engineering DepartmentUNICAMP School of Electrical and Computer Engineering Department of TelematicsUNIFESP, Institute of Science and TechnologySciELOSociedade Brasileira de Pesquisa OperacionalUniversidade Federal de São Paulo (UNIFESP)Universidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Silva, Ricardo Coelho [UNIFESP]Cantão, Luiza A.p.Yamakami, Akebo2015-06-14T13:44:53Z2015-06-14T13:44:53Z2012-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion315-329application/pdfhttp://dx.doi.org/10.1590/S0101-74382012005000018Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional, v. 32, n. 2, p. 315-329, 2012.10.1590/S0101-74382012005000018S0101-74382012000200004.pdf0101-7438S0101-74382012000200004http://repositorio.unifesp.br/handle/11600/7250ark:/48912/0013000012txwengPesquisa Operacionalinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-05T05:15:24Zoai:repositorio.unifesp.br/:11600/7250Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-12-11T20:52:20.756334Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
spellingShingle |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization Silva, Ricardo Coelho [UNIFESP] fuzzy numbers cut levels fuzzy optimization genetic algorithms |
title_short |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_full |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_fullStr |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_full_unstemmed |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_sort |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
author |
Silva, Ricardo Coelho [UNIFESP] |
author_facet |
Silva, Ricardo Coelho [UNIFESP] Cantão, Luiza A.p. Yamakami, Akebo |
author_role |
author |
author2 |
Cantão, Luiza A.p. Yamakami, Akebo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Paulo (UNIFESP) Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Silva, Ricardo Coelho [UNIFESP] Cantão, Luiza A.p. Yamakami, Akebo |
dc.subject.por.fl_str_mv |
fuzzy numbers cut levels fuzzy optimization genetic algorithms |
topic |
fuzzy numbers cut levels fuzzy optimization genetic algorithms |
description |
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-01 2015-06-14T13:44:53Z 2015-06-14T13:44:53Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0101-74382012005000018 Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional, v. 32, n. 2, p. 315-329, 2012. 10.1590/S0101-74382012005000018 S0101-74382012000200004.pdf 0101-7438 S0101-74382012000200004 http://repositorio.unifesp.br/handle/11600/7250 |
dc.identifier.dark.fl_str_mv |
ark:/48912/0013000012txw |
url |
http://dx.doi.org/10.1590/S0101-74382012005000018 http://repositorio.unifesp.br/handle/11600/7250 |
identifier_str_mv |
Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional, v. 32, n. 2, p. 315-329, 2012. 10.1590/S0101-74382012005000018 S0101-74382012000200004.pdf 0101-7438 S0101-74382012000200004 ark:/48912/0013000012txw |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pesquisa Operacional |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
315-329 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1818602558901452800 |