Application of an iterative method and an evolutionary algorithm in fuzzy optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S0101-74382012005000018 http://hdl.handle.net/11449/73304 |
Resumo: | This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society. |
id |
UNSP_7b0dcb461e8f1345b8acfe08dfafc1a3 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73304 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Application of an iterative method and an evolutionary algorithm in fuzzy optimizationCut levelsFuzzy numbersFuzzy optimizationGenetic algorithmsThis work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.Institute of Science and Technology Federal University of São Paulo UNIFESP, Rua Talim, 330, 12231-280 São José dos Campos, SPEnvironmental Engineering Department São Paulo State University Sorocaba, SPDepartment of Telematics School of Electrical and Computer Engineering University of Campinas - UNICAMP, Av. Albert Einstein, 400, 13083-852 Campinas, SPEnvironmental Engineering Department São Paulo State University Sorocaba, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Silva, Ricardo CoelhoCantão, Luiza A.P. [UNESP]Yamakami, Akebo2014-05-27T11:26:29Z2014-05-27T11:26:29Z2012-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article315-329application/pdfhttp://dx.doi.org/10.1590/S0101-74382012005000018Pesquisa Operacional, v. 32, n. 2, p. 315-329, 2012.0101-74381678-5142http://hdl.handle.net/11449/7330410.1590/S0101-74382012005000018S0101-743820120050000182-s2.0-848664318962-s2.0-84866431896.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacional0,365info:eu-repo/semantics/openAccess2024-11-21T13:10:58Zoai:repositorio.unesp.br:11449/73304Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-21T13:10:58Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
spellingShingle |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization Silva, Ricardo Coelho Cut levels Fuzzy numbers Fuzzy optimization Genetic algorithms |
title_short |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_full |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_fullStr |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_full_unstemmed |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
title_sort |
Application of an iterative method and an evolutionary algorithm in fuzzy optimization |
author |
Silva, Ricardo Coelho |
author_facet |
Silva, Ricardo Coelho Cantão, Luiza A.P. [UNESP] Yamakami, Akebo |
author_role |
author |
author2 |
Cantão, Luiza A.P. [UNESP] Yamakami, Akebo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Silva, Ricardo Coelho Cantão, Luiza A.P. [UNESP] Yamakami, Akebo |
dc.subject.por.fl_str_mv |
Cut levels Fuzzy numbers Fuzzy optimization Genetic algorithms |
topic |
Cut levels Fuzzy numbers Fuzzy optimization Genetic algorithms |
description |
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05-01 2014-05-27T11:26:29Z 2014-05-27T11:26:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0101-74382012005000018 Pesquisa Operacional, v. 32, n. 2, p. 315-329, 2012. 0101-7438 1678-5142 http://hdl.handle.net/11449/73304 10.1590/S0101-74382012005000018 S0101-74382012005000018 2-s2.0-84866431896 2-s2.0-84866431896.pdf |
url |
http://dx.doi.org/10.1590/S0101-74382012005000018 http://hdl.handle.net/11449/73304 |
identifier_str_mv |
Pesquisa Operacional, v. 32, n. 2, p. 315-329, 2012. 0101-7438 1678-5142 10.1590/S0101-74382012005000018 S0101-74382012005000018 2-s2.0-84866431896 2-s2.0-84866431896.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pesquisa Operacional 0,365 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
315-329 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304187093221376 |