Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFTM |
Texto Completo: | http://bdtd.uftm.edu.br/handle/tede/833 |
Resumo: | A ativação da imunidade adaptativa mediada por linfócitos T citotóxicos (LTC) e células natural killer (NK) é controlada pela expressão de receptores e moléculas inibitórias, que atuam prevenindo a exacerbação imunológica e apoptose por excesso de ativação. As células tumorais são capazes utilizar estes mesmos ligantes como mecanismo de escape tumoral, inibindo o reconhecimento e ativação das células efetoras, levando-as ao estado de irresponsividade. Alterações no funcionamento do sistema imune podem interferir diretamente na sobrevida do paciente. Por isso, informações a respeito do perfil imunológico são necessários para o desenvolvimento de uma terapia individualizada para o tratamento destas doenças. Neste estudo foi avaliada a expressão gênica de receptores e moléculas inibitórias e de proteínas citolíticas em pacientes com linfoma não-Hodgkin (LNH) e mieloma múltiplo (MM) em comparação a indivíduos saudáveis. O aumento na expressão gênica de granzima B associado a redução na expressão de Fas-L e PD-L1 demonstrou a ativação do sistema imunológico em pacientes com LNH. A redução dos níveis das moléculas inibitórias atuou como fator ativador da resposta imune, que poderia acarretar na inibição da autorregulação das células efetoras, levando-as a maior ativação e atividade citotóxica do sistema imunológico. Por sua vez, na ausência de expressões significativas, a redução do sistema imunológico em pacientes com MM pode ser comprovada pelas correlações inversamente proporcionais entre as proteínas citolíticas e receptores ou moléculas inibitórios. Neste cenário, o aumento na expressão das moléculas inibitórias atua simultaneamente às células tumorais, promovendo uma regulação negativa do sistema imunológico, auxiliando no processo de imunorregulação. A próxima etapa deste estudo é correlacionar a expressão destes fatores tanto no sangue periférico quanto no microambiente tumoral, em conjunto com a análise de sobrevida, para um melhor entendimento destes mecanismos na resposta imune. |
id |
UFTM_01354564b1f60c924b32fcb9e67f2dc8 |
---|---|
oai_identifier_str |
oai:bdtd.uftm.edu.br:tede/833 |
network_acronym_str |
UFTM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository_id_str |
|
spelling |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiploPerforina.Granzima B.Fas.Fas-L.CD86.PD-1.PD-L1.CTLA-4.TIM-3.MARCH-1.Linfoma não-Hodgkin.Mieloma múltiplo.Receptores inibitórios de células T.qPCR.Perforin.Granzyme B.Fas.Fas-L.CD86.PD-1.PD-L1.CTLA-4.TIM-3.MARCH-1.Non-Hodgkin lymphoma.multiple myeloma.T cell inhibitory receptors.qPCR.ImunogenéticaA ativação da imunidade adaptativa mediada por linfócitos T citotóxicos (LTC) e células natural killer (NK) é controlada pela expressão de receptores e moléculas inibitórias, que atuam prevenindo a exacerbação imunológica e apoptose por excesso de ativação. As células tumorais são capazes utilizar estes mesmos ligantes como mecanismo de escape tumoral, inibindo o reconhecimento e ativação das células efetoras, levando-as ao estado de irresponsividade. Alterações no funcionamento do sistema imune podem interferir diretamente na sobrevida do paciente. Por isso, informações a respeito do perfil imunológico são necessários para o desenvolvimento de uma terapia individualizada para o tratamento destas doenças. Neste estudo foi avaliada a expressão gênica de receptores e moléculas inibitórias e de proteínas citolíticas em pacientes com linfoma não-Hodgkin (LNH) e mieloma múltiplo (MM) em comparação a indivíduos saudáveis. O aumento na expressão gênica de granzima B associado a redução na expressão de Fas-L e PD-L1 demonstrou a ativação do sistema imunológico em pacientes com LNH. A redução dos níveis das moléculas inibitórias atuou como fator ativador da resposta imune, que poderia acarretar na inibição da autorregulação das células efetoras, levando-as a maior ativação e atividade citotóxica do sistema imunológico. Por sua vez, na ausência de expressões significativas, a redução do sistema imunológico em pacientes com MM pode ser comprovada pelas correlações inversamente proporcionais entre as proteínas citolíticas e receptores ou moléculas inibitórios. Neste cenário, o aumento na expressão das moléculas inibitórias atua simultaneamente às células tumorais, promovendo uma regulação negativa do sistema imunológico, auxiliando no processo de imunorregulação. A próxima etapa deste estudo é correlacionar a expressão destes fatores tanto no sangue periférico quanto no microambiente tumoral, em conjunto com a análise de sobrevida, para um melhor entendimento destes mecanismos na resposta imune.The activation of adaptive immunity mediated by cytotoxic T lymphocytes (CTL) and natural killer (NK) is controlled by expression of inhibitory receptors and molecules, which act by preventing exacerbation and immune activation by excessive apoptosis. Tumor cells are able to use these same ligands as a mechanism of tumor escape, by inhibiting the recognition and activation of effector cells, leading to the state of irresponsiveness. Changes in the functioning of the immune system can directly interfere with therapeutic response and / or prognosis of the disease. Therefore, information regarding the immunological profile is necessary for the development of an individualized therapy for the treatment of these diseases. In this study, we evaluated the gene expression of cytolytic protein and inhibitory receptors or molecules in patients with non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM) compared to healthy individuals. The increase in granzyme B gene expression associated with reduced expression of Fas-L and PD-L1 demonstrated the activation of the immune system in patients with NHL. The reduction in the levels of inhibitory molecules served as activating factor immune response, which could result in inhibition of self-regulation of effector cells, leading to greater activation and the cytotoxic activity of the immune system. In turn, in the absence of significant expressions, the reduction of the immune system in MM patients can be proved by the inversely proportional correlations between cytolytic proteins and inhibitory receptors or molecules. In this scenario, the increase in the expression of the inhibitory molecules acts simultaneously to the tumor cells, promoting a negative regulation of the immune system, aiding in the process of immunoregulation. The next step of this study is to correlate the expression of these factors in both peripheral blood and in the tumor microenvironment in conjunction with survival analysis for a better understanding of these mechanisms in the immune response.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeSOUZA, Helio Moraes de10804528691http://lattes.cnpq.br/0502276939556083VITO, Fernanda Bernadelli de05893164601http://lattes.cnpq.br/1125407492198560CALADO, Marianna Licati2019-08-26T14:35:40Z2019-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfCALADO, Marianna Licati. Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo. 2019. 79f . Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2019 .http://bdtd.uftm.edu.br/handle/tede/833porAMERICAN CANCER SOCIETY. Key Statistics About Multiple Myeloma. 2018. American Cancer Society. Disponível em <https://www.cancer.org/cancer/multiple-myeloma/about/key-statistics.html>. Acesso em 10 de setembro de 2018. ALMEIDA-OLIVEIRA A; DIAMOND HR. Atividade antileucêmica das células Natural Killer (NK). Revista Brasileira de Cancerologia. v. 54,n. 3,p. 297-305, 2008. ANSELL, S.M. Hodgkin Lymphoma: Diagnosis and Treatment. Mayo Clinic Proceedings. v. 90, n. 11, p. 1574-1583, 2015. ANDERSON AC. TIM-3: An emerging target in cancer immunotherapy landscape. Cancer Immunology Research. v. 2, n. 5, p. 393-398, 2014. ANDERSON AC; JOLLER N; KUCHROO VK. Lag-3, Tim-3 and TIGIT co-inhibitory receptors with specialized functions in immune regulation. Immunity Journal. v. 44, n. 5, p. 989-1004, 2016. AISENBERG, A.C. Historical review of lymphomas. Bristish Journal Haematollogy. v. 109, n. 3, p. 466-76, 2000. ARMITAGE, J.O. Staging non-Hodgkin lymphoma. CA Cancer Journal for Clinicians. v. 55, n. 6, p. 368-376, 2005. ARMITAGE, J.O; GASCOYNE, R.D; LUNNING, M.A; et al. Non-Hodgkin Lymphoma. The Lancet. v. 390, n. 10091, p. 298-310, 2017. ÁSTER JC. Doença de leucócitos, linfonodo, baço e timo. In Kumar V, Abbas AK, Fausto N, Robbins e Cotran. Patologia-Bases patológicas das doenças. 7ª edição. Rio de Janeio: Elsevier, p. 695-746, 2005. BAITSCH L, LEGAT L, BARBA L, et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PloS One. v. 7, n. 2, 2012. BARAVALLE G; PARK H; McSWEENWY M; et al. Ubiquitination of CD86 Is a Key Mechanism in Regulating Antigen Presentation by Dendritic Cells. The Journal of Immunology. v. 187, n. 6, p. 2966-2973, 2011. BARTEE E; MANOSURI M; NERENBERG BTH; et al. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. Journal of Virology. v. 78, p. 1109-1120, 2004. BATTELLA S; COX MC; LA SCALEIA R; et al. Peripheral blood T cell alterations in newly diagnosed diffuse large B cell lymphoma patients and their long‑term dynamics upon rituximab‑based chemoimmunotherapy. Cancer Immunology Immunotherapy. v. 66, n. 10, p. 1295-1306, 2017. BELL RB; FENG Z; BIFULCO CB; et al. Immunotherapy. Oral, Head, Neck Oncology and Reconstructive Surgery. p. 314-340, 2018. BOURGENOIS-DAIGNEAULT MC; THIBODEAU J. Autoregulation of MARCH1 expression by dimerization and autoubiquitination. The Journal of Immunology. v. 188, n. 10, p. 4959-4970, 2012. BUCHBINDER EI; DESAI A. CTLA-4 and PD-1 pathways. Similarities, differences and implications of their inhibition. American Journal of Clinical Oncology. v. 39, n. 1, p. 98-106, 2016. BUSTIN SA; BENES V; GARSON JA; et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemestry. v. 55, n. 4, p. 611-622, 2009. CAO J; ZOU L; LUO P; et al. Increased production of circulating soluble co-stimulatory molecules CTLA-4, CD28 and CD80 in patients with rheumatoid arthritis. International Immunopharmacology. v. 14, n. 4, p. 585-592, 2012. CARRENO BM; BENNET F; CHAU TA; et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. The Journal of Immunology. v. 165, n. 3, p. 1352-1356, 2000. COLUCCI F; TRAHERNE J. Killer-cell immunoglobulin-like receptors on the cusp of modern immunogenetics. Immunology. v. 152, n. 4, p. 556-561, 2017. CORCORAN K; JABBOUR M; BHAGWNDIN C; et al. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane –associated RING-CH-1 (MARCH1). The Journal of Biological Chemistry. v. 286, n. 43, p. 37168-37180, 2011. COX MC; BATTELLA S; SCALEIA RL; et al. Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients. Oncoimmunology. v. 4, n. 3, 2015. CHANG LC; CHEN TP; KUO WK; et al. The Protein Expression of PDL1 Is Highly Correlated with Those of eIF2α and ATF4 in Lung Cancer. Disease Markers. doi: 10.1155/2018/5068701. eCollection 2018, 2018. CHEN L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nature Reviews Immunology. v. 4, n. 5, p. 336-347, 2014. CHEN X; LIU S; WANG L; et al. Clinical significance of B7-H1 (PD-L1) expression in human acute leukemia. Cancer Biology & Therapy. v. 7, n. 5, p. 622-627, 2008. CHEN X; SHAO Q; HAO S; et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. v. 8, n. 8, p. 13703-13715, 2017. CLEMENTI R; DAGNA L; DIANZANI U; et al. Inherited perforin and Fas mutations in a patient with autoimmune lymphoproliferative syndrome and lymphoma. New England Journal of Medicine. v. 351, n. 14, p. 1419-1424, 2004. DADI S; CHHANGAWALA S; WHITLOCK BM; et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell. v. 164, p. 365-377, 2016. DILLY-FELDIS M, ALADJIDI N, REFAIT JK, PARRENS M, DUCASSOU S, RULLIER A. Expression of PD-1/PD-L1 in children's classical Hodgkin lymphomas. Pediatr Blood Cancer. 2019 Jan 13:e27571. GREENFIELD EA; NGUYEN KA; KUCHROO VK. CD28/B7 coestimulation: a review. Critical Reviews in Immunology. v. 18, n. 5, p. 389-418, 1998. HILMENYUK T; RUCKSTUHL CA; HAROYZ M; et al. T cell inhibitory mechanisms in a model of aggressive Non-Hodgkin's Lymphoma. Oncoimmunology. v. 7, n. 1, e1365997, 2018. HEKIMGIL, M; CAGIRGAN S; PEHLIVAN M; et al. Immunohistochemical detection of CD 95 (Fas) & Fas ligand (Fas-L) in plasma cells of multiple myeloma and its correlation with survival. Leukemia and Lymphoma. v. 47, n. 2, p. 271-280, 2006. HEUSEL JW; WESSELSCHMIDT RL; SHRESTA S; et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. v. 76, p. 977-987, 1994. HORLAD H; OHNISHI K; MA C; et al. TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma. Oncology Letters. v. 12, n. 2, p. 1519-1524, 2016. HUANG, X; BAI X; CAO Y; et al. Lymphoma endothelium preferentially express TIM-3 and facilitates the progression of lymphoma by mediating immune evasion. The Journal of Experimental Medicine. v. 207, n. 3, p. 505-520, 2010. INTHAGARD J; EDWARDS J; ROSEWEIR AK. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers. Clinical Science (London). v. 133, n. 2, p. 181-193, 2019. ISHIDO S; MATSUKI Y; GOTO E; et al. MARCH-I: a new regulator of dendritic cell function. Molecules and Cells. v. 29, n. 3, p. 229-232, 2009. JABERIPOUR M; HABIBAGAHI M; HOSSEINI A; et al. Detection of B cell lymphoma 2, tumor protein 53, and Fas gene transcripts in blood cells of patients with breast cancer. Indian Journal Cancer. v. 47, n. 4, p. 412-417, 2010. KAGI D; VIGNAUX F; LEDERMANN B; et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. V. 265, n. 5171, p. 528-530, 1994. KAMARASHEV, J; BURG, G; MINGARI, M.C; et al.. Differential expression of cytotoxic molecules and killer cell inhibitory receptors in CD8+ and CD56+ cutaneous lymphomas. The American Journal of Pathology. v.158, n. 5, p. 1593-1598, 2001. KARACHALIOU N; CAO MG; TEIXIDO C; et al. Understanding the function and dysfunction of the imune system in lung cancer: the role of immune checkpoints. Cancer Biology & Medicine. v. 12, n. 2, p. 79-86, 2015. KIM R; EMI M; TANABE K; et al. The role of Fas ligand and transforming growth factor β in tumor progression. Cancer Cytopathology. v. 100, n. 11, 2004. KIM N; KIM HS. Targeting Checkpoint receptors and molecules for therapeutic modulation of natural killer cells. Frontiers in Immunology. v. 9, 2018. KIYASU J; MIYOSHI H; HIRATA A; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. v.126, n. 9, p. 2193-2201, 2015. KYLE RA; GERTZ MA; WITZIG TE; et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proceedings. n. 78, v. 1, p. 21-33, 2003. KONG Y; ZHANG J; CLAXTON DF; et al. PD-1(hi)TIM-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer Journal. v. 5, 2015. KONJEVIC G; JURISIC V; JOVIC V; et al. Investigation of NK cell function and their modulation in different malignancies. Immunologic Research. v. 52, n. 1-2, p. 139-156, 1999. LI J; NI L; DONG C. Immune checkpoint receptors in cancer: redundant by design? Current Opinion in Immunology. v.45, p. 37-42, Epub 2017 Feb 10, 2017. LIAO Z; LV X; LIU S; et al. Different aberrante expression. Pattern of imune checkpoint receptors in patients with PTCL and NK/T-CL. Asia-Pacific Journal of Clinical Oncology. p. 1-7, 2018. LINSLEY OS; BRADSHAW J; GREENE J; et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. v. 4, p. 535-543, 1996. LINSLEY OS; GREENE JL; BRADY W; et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. v. 1, p. 793-801, 1994. LORD SJ; RAJOTTE RV; KORBUTT GS; et al. Granzyme B: a natural born killer. Immunology Reviews. v. 193, n. 1, p. 31-38, 2003. MACFARLENE AW; JILLAB M; SMITH MR; et al. NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors. Oncoimmunology. v. 6, n. 7, eCollection, 2017. MALMBERG KJ; CARLSTEN M; BJORKLUND A; et al. Natural killer cell-mediated immunosurveillance of human cancer. Seminars in Immunology. v. 31, 2017. MANSOUR A; ELKHODARY T; DARWISH A; et al. Increased expression of costimulatory molecules CD86 and sCTLA-4 in patients with acute lymphoblastic leukemia. Leukemia & Lymphoma. v. 55, n. 9, p. 2120-2124, 2014. MARGOLIN K. Introduction to the role of the immune system in melanoma. Hematology/Oncology Clinics of North America. v. 28, n. 3, p. 537-558, 2014. MARTÍNEZ-LOSTAO L; ANEL A; PARDO J. How do cytotoxic lymphocytes kill cancer cells? Clinical Cancer Research. v. 21, n. 22, p. 5047-5056, 2015. MATSUKI Y; MHUMURA-HOSHINO M; GOTO E; et al. Novel regulation of MHC class II function in B cells. The EMBO Journal. v. 26, n. 3, p. 846-854, 2007. MAZZASCHI G; FACCHINETTI F; MISSALE G; et al. The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer. n. 127, p. 153-163, 2019. MENIAWY TM; LAKE RA; McDONNEL AM; et al. PD-L1 on peripheral blood T lymphocytes is prognostic in patients with non-small cell lung cancer (NSCLC) treated with EGFR inhibitors. Lung Cancer. v. 93, p. 9-16, 2016. MELLOR-HEINEKE; VILLANUEVA J; JORDAN MB; et al. Elevated Granzyme B in Cytotoxic Lymphocytes is a Signature of Immune Activation in Hemophagocytic Lymphohistiocytosis. Frontiers of Immunology. v. 4, n. 72, doi: 10.3389/fimmu.2013.00072. eCollection, 2013. MEIRAV K; GINETTE S; TAMAR T; et al. Extrafollicular PD1 and Intrafollicular CD3 Expression Are Associated With Survival in Follicular Lymphoma. Clinical Lymphoma, Myeloma & Leukemia. v. 17, n. 10, p. 645-649, 2017. MINISTÉRIO DA SAÚDE. Instituto Nacional de Câncer. A situação do câncer no Brasil. INCA. Rio de Janeiro 2006. MINISTÉRIO DA SAÚDE. Instituto Nacional de Câncer. Estimativa 2018: incidência de câncer no Brasil. INCA. Rio de Janeiro 2017. Disponível em <https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-incidencia-de-cancer-no-brasil-2018.pdf>. MIYOSHI H; KIYASU J; YOSHIDA N; et al. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood. v.128, n. 10, p. 1374-1381, 2016. MULLBACHER, A; WARING, P; THA HLA, R; et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proceedings of the National Academy of Sciences. v.96:13950–13955, 1999. OCAÑA-GUZMAN R; TORRE-BOUSCOULET L; et al. TIM-3 regulates distinct functions in macrofhages. Frontiers in Immunology. v. 7, n. 229, 2016. OSÍNSKA I; POPKO K; DEMKOW U. Perforin: a important player in immune response. Central European Journal of Immunology. v. 39, n. 1, p. 109-115, 2014. PAULA e SILVA, RO; BRANDÃO KMA; PINTO PVM; et al. Mieloma múltiplo: características clínicas e laboratoriais ao diagnóstico e estudo prognóstico. Revista Brasileira de Hematologia e Hemoterapia. v. 31, n. 2, p. 63-68, 2009. PARDOLL DM. The blockade of immune checkpoints in câncer immunotherapy. Nature Reviews Cancer. v. 12, n. 4, p. 252-264, 2012. PFEFFER CM; SINGH ATK. Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences. v.19, n. 2, p. 448, 2018. PIPKIN M.E; RAO A; LICHTENHELD M.G. The transcriptional control of the perforin locus. Immunological Reviews. v. 235, n. 1, p. 55-72, 2010. PODACK ER; KONIGSBERG PJ. Cytolytic T cell granules. Isolation, structural, biochemical and functional characterization. Journal of Experimental Medicine. v. 160, n. 3, p. 695-710, 1984. REN X; WU H; LU J; et al. PD1 protein expression in tumor infiltrated lymphocytes rather than PDL1 in tumor cells predicts survival in triple-negative breast cancer. Cancer Biology & Therapy. v. 19, n. 5, p. 373-380, 2018. REVELL, P.A; GROSSMAN, W.J; THOMAS, D.A; CAO, X; BEHL, R; RATNER, J.A; et al. Granzyme B and the downstream granzymes C and/or F are important for cytotoxic lymphocyte functions. The Jounal of Immunology. v.174:2124–2131, 2005. ROSENBLATT J; AVIGAN D. Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality?. Blood. v.129, p. 275-279, 2017. SANCHEZ-BEATO M; SANCHEZ-AGUILERA A; PIRIS MA; et al. Cell cycle deregulation in B-cell lymphomas. Blood. v. 101, n. 4, p. 1220-1235, 2003. SOUZA BMB; DE VITO FB; CALADO ML; et al. Evaluation of the cytotoxic response mediated by perforin and granzyme B in patients with non-Hodgkin lymphoma. Leukemia & Lymphoma. V. 59, n. 1, p. 214-220, 2018. SHANKLAND KR; ARMITAGE JO; HANCOCK BW. Non-Hodgkin lymphoma. Lancet. v. 380, n. 9844, p. 848-857, 2012. SHRESTA, S; GRAUBERT, T.A; THOMAS, D.A; et al. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity. v.10:595–605, 1999. SMYTH M.J; THIA K.Y; STREET S.E; et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. The Journal of Expreimental Medicine. v. 192, n. 5, p. 755-60, 2000. SPRANGER S; SPAAPEN RM; ZHA Y; et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Science Translational Medicine. 2013; v. 5, n. 200, 2013. SWERDLOW SH, CAMPO E, HARRIS NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2008. TAI YT; CHO SF; ANDERSON KC. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Frontiers in Immunology. v. 10, n. 9, eCollection 2018. TAUBE JM; KLEIN A; BRAHMER JR; et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clinical Cancer Research. v. 20, p. 5064-5074, 2014. TORREZINI T; ANTHONAZIO DA. Imunovigilância e Imunoedição de Neoplasias: Implicações Clínicas e Potencial Terapêutico. Revista Brasileira de Cancerologia. v. 54, n. 1, p. 63-77, 2008. THE LEUKEMIA AND LYMPHOMA SOCIETY. Facts and statistics. 2018. The Leukemia and Lymphoma Society. Disponível em <www.lls.org/facts-and-statistics/facts-and-statistics-overview>. Acesso em 29 de novembro de 2018. THIBODEAU J; BOURGEOIS-DAIGNEAULT MC; HUPPE G; et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. European Journal of Immunology. v. 38, n. 5, p. 1225-1230, 2008. TRAPANI JA. Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore‑forming protein, perforin, and the serine protease, granzyme B. Internal Medicine Journal. v. 25, n. 6, p. 793-799, 1995. TRAPANI JA. Granzymes, cytotoxic granules and cell death: the eraly work of Dr. Jurg Tschopp. Cell Death & Differentitation. v.19, n. 1, p. 21-27, 2012. TSCHOPP J; NABHOLZ M. Perforin-mediates target cell lysis by cytolytic T lymphocytes. Annual Review of Immunology. v. 8, p. 279-302, 1990. TURNER CT; LIM D; GRANVILLE DJ. Granzyme B in skin inflammation and disease. Matrix Biology. 2017, https://doi.org/10.1016/j.matbio.2017.12.005. VAN DEN BROEK M.E; KÄGI D; OSSENDORP F; et al. Decreased tumor surveillance in perforin-deficient mice. The Journal of Experimental Medicine. v. 184, n. 5, p. 1781-90, 1996. VAN ELSAS A; SUTMULLER RP; HURWITZ AA; et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. The Journal of Experimental Medicine. v. 194, p. 481-489, 2001. VEJBAESYA S; SAE-TAM P; KHUHAPINANT A; et al. Killer cell immunoglobulin-like receptors in Thai patients with leukemia and diffuse large B-cell lymphoma. Human Immunology. v. 75, n. 7, p. 673-676, 2014. VERHAGE M; SORENSEN J.B. Vesicle docking in regulated exocytosis. Traffic. v.9, n. 9, p. 1414-24, 2008. VILLA-MORALES M; GOZÁLEZ-GUGEL E; SHAHBAZI MN; et al. Modulation of the Fas-apoptosis-signalling pathway by fucntional polymorfphisms at Fas, FasL and Fadd and their implication in T-cell lymphoblastic lymphoma susceptibility. Carcinogenesis. v. 31, n. 12, p. 2165-2171, 2010. VOSKOBOINIK I, WHISSTOCK JC, TRAPANI JA. Perforin and granzymes: function, dysfunction and human pathology. Nature Reviews Immunology. v.15, n. 6, p. 388-400, 2015. WALDHAUER I; STEINLE A. NK cells and cancer immunosurveillance. Oncogene. v. 27, n. 45, p. 5932-5943, 2008. WANG, S.; CHEN, L. lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol, v. 1, n.1, p. 37-42, 2004. WEBER M; WEHRLAN F; BARAN C; et al. PD-L1 expression in tumor tissue and peripheral blood of patients with oral squamous cell carcinoma. Oncotarget. v. 8, n. 68, p. 112584-112597, 2017. WERNER JM; KUHL S; STAVRINOU P; et al. Expression of FAS-L Differs from Primary to Relapsed Low-grade Gliomas and Predicts Progression-free Survival. Anticancer Research. v. 37, n. 12, p. 6639-6648, 2017. WILLENBRING RC; JOHNSON AJ. Finding a balance between protection and pathology: the dual role of perforin in human disease. International Journal of Molecular Sciences. v. 18, n. 8, p. 1608, 2017. YANG, ZZ; NOVAK A.N; ZIESMER S.C; et al. Attenuation of CD8+ T-Cell Function by CD4+ CD25+ Regulatory T Cells in B-Cell Non-Hodgkin’s Lymphoma. Cancer Research. v.66, n.20, p. 10145-10152, 2006. YANG ZZ; GROTE DM; ZIESMER SC; et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. The Journal of Clinical Investigation. v. 122, n. 4, p. 1271-1282, 2012. YANG H; BUESO-RAMOS C; DINARDO C; et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. v. 28, n. 6, p. 1280-1288, 2014. XAGORARIS I; PATERAKIS G; ZOLOTA B; et al. Expression of Granzyme B and Perforin in Multiple Myeloma. Acta Haematologica. v. 105, n. 3, p. 125-129, 2001. ZELLE-RIESER C; THANGAVADIEL S; BIEDERMANN R; et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. Journal of Hematology & Oncology. V. 9, n. 1, 2016. ZAGO MA; FALCÃO RP; PASQUINI P. Tratado de Hematologia. São Paulo: Ed. Atheneu, 2014. ZENG Z; SHI F; ZHOU L; et al. Upregulation of Circulating PD-L1/PD-1 Is Associated with Poor Post-Cryoablation Prognosis in Patients with HBV-Related Hepatocellular Carcinoma. PloS One. v. 6, n. 9, 2011. ZHANG X; GAO L; MENG K; et al. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma. Cellular Immunology. [Epub ahead of print], 2018. ZHAO S; ZHANG M; ZHANG Y; et al. The prognostic value of programmed cell death ligand 1 expression in non-Hodgkin lymphoma: a meta-analysis. Cancer Biology & Medicine. v. 15, n. 3, p. 290-298, 2018. ZHOU Q; MUNGER ME; VEENSTRA RG; et al. Coexpression of TIM-3 and PD-1 identifies a CD8+ T cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. v. 117, n. 17, p. 4501-4510, 2011.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-09-02T17:05:52Zoai:bdtd.uftm.edu.br:tede/833Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-09-02T17:05:52Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false |
dc.title.none.fl_str_mv |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
title |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
spellingShingle |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo CALADO, Marianna Licati Perforina. Granzima B. Fas. Fas-L. CD86. PD-1. PD-L1. CTLA-4. TIM-3. MARCH-1. Linfoma não-Hodgkin. Mieloma múltiplo. Receptores inibitórios de células T. qPCR. Perforin. Granzyme B. Fas. Fas-L. CD86. PD-1. PD-L1. CTLA-4. TIM-3. MARCH-1. Non-Hodgkin lymphoma. multiple myeloma. T cell inhibitory receptors. qPCR. Imunogenética |
title_short |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
title_full |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
title_fullStr |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
title_full_unstemmed |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
title_sort |
Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo |
author |
CALADO, Marianna Licati |
author_facet |
CALADO, Marianna Licati |
author_role |
author |
dc.contributor.none.fl_str_mv |
SOUZA, Helio Moraes de 10804528691 http://lattes.cnpq.br/0502276939556083 VITO, Fernanda Bernadelli de 05893164601 http://lattes.cnpq.br/1125407492198560 |
dc.contributor.author.fl_str_mv |
CALADO, Marianna Licati |
dc.subject.por.fl_str_mv |
Perforina. Granzima B. Fas. Fas-L. CD86. PD-1. PD-L1. CTLA-4. TIM-3. MARCH-1. Linfoma não-Hodgkin. Mieloma múltiplo. Receptores inibitórios de células T. qPCR. Perforin. Granzyme B. Fas. Fas-L. CD86. PD-1. PD-L1. CTLA-4. TIM-3. MARCH-1. Non-Hodgkin lymphoma. multiple myeloma. T cell inhibitory receptors. qPCR. Imunogenética |
topic |
Perforina. Granzima B. Fas. Fas-L. CD86. PD-1. PD-L1. CTLA-4. TIM-3. MARCH-1. Linfoma não-Hodgkin. Mieloma múltiplo. Receptores inibitórios de células T. qPCR. Perforin. Granzyme B. Fas. Fas-L. CD86. PD-1. PD-L1. CTLA-4. TIM-3. MARCH-1. Non-Hodgkin lymphoma. multiple myeloma. T cell inhibitory receptors. qPCR. Imunogenética |
description |
A ativação da imunidade adaptativa mediada por linfócitos T citotóxicos (LTC) e células natural killer (NK) é controlada pela expressão de receptores e moléculas inibitórias, que atuam prevenindo a exacerbação imunológica e apoptose por excesso de ativação. As células tumorais são capazes utilizar estes mesmos ligantes como mecanismo de escape tumoral, inibindo o reconhecimento e ativação das células efetoras, levando-as ao estado de irresponsividade. Alterações no funcionamento do sistema imune podem interferir diretamente na sobrevida do paciente. Por isso, informações a respeito do perfil imunológico são necessários para o desenvolvimento de uma terapia individualizada para o tratamento destas doenças. Neste estudo foi avaliada a expressão gênica de receptores e moléculas inibitórias e de proteínas citolíticas em pacientes com linfoma não-Hodgkin (LNH) e mieloma múltiplo (MM) em comparação a indivíduos saudáveis. O aumento na expressão gênica de granzima B associado a redução na expressão de Fas-L e PD-L1 demonstrou a ativação do sistema imunológico em pacientes com LNH. A redução dos níveis das moléculas inibitórias atuou como fator ativador da resposta imune, que poderia acarretar na inibição da autorregulação das células efetoras, levando-as a maior ativação e atividade citotóxica do sistema imunológico. Por sua vez, na ausência de expressões significativas, a redução do sistema imunológico em pacientes com MM pode ser comprovada pelas correlações inversamente proporcionais entre as proteínas citolíticas e receptores ou moléculas inibitórios. Neste cenário, o aumento na expressão das moléculas inibitórias atua simultaneamente às células tumorais, promovendo uma regulação negativa do sistema imunológico, auxiliando no processo de imunorregulação. A próxima etapa deste estudo é correlacionar a expressão destes fatores tanto no sangue periférico quanto no microambiente tumoral, em conjunto com a análise de sobrevida, para um melhor entendimento destes mecanismos na resposta imune. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-26T14:35:40Z 2019-03-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CALADO, Marianna Licati. Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo. 2019. 79f . Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2019 . http://bdtd.uftm.edu.br/handle/tede/833 |
identifier_str_mv |
CALADO, Marianna Licati. Avaliação da expressão de proteínas citolíticas e moléculas inibitórias na regulação da atividade citotóxica em pacientes com linfoma não-Hodgkin e mieloma múltiplo. 2019. 79f . Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2019 . |
url |
http://bdtd.uftm.edu.br/handle/tede/833 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
AMERICAN CANCER SOCIETY. Key Statistics About Multiple Myeloma. 2018. American Cancer Society. Disponível em <https://www.cancer.org/cancer/multiple-myeloma/about/key-statistics.html>. Acesso em 10 de setembro de 2018. ALMEIDA-OLIVEIRA A; DIAMOND HR. Atividade antileucêmica das células Natural Killer (NK). Revista Brasileira de Cancerologia. v. 54,n. 3,p. 297-305, 2008. ANSELL, S.M. Hodgkin Lymphoma: Diagnosis and Treatment. Mayo Clinic Proceedings. v. 90, n. 11, p. 1574-1583, 2015. ANDERSON AC. TIM-3: An emerging target in cancer immunotherapy landscape. Cancer Immunology Research. v. 2, n. 5, p. 393-398, 2014. ANDERSON AC; JOLLER N; KUCHROO VK. Lag-3, Tim-3 and TIGIT co-inhibitory receptors with specialized functions in immune regulation. Immunity Journal. v. 44, n. 5, p. 989-1004, 2016. AISENBERG, A.C. Historical review of lymphomas. Bristish Journal Haematollogy. v. 109, n. 3, p. 466-76, 2000. ARMITAGE, J.O. Staging non-Hodgkin lymphoma. CA Cancer Journal for Clinicians. v. 55, n. 6, p. 368-376, 2005. ARMITAGE, J.O; GASCOYNE, R.D; LUNNING, M.A; et al. Non-Hodgkin Lymphoma. The Lancet. v. 390, n. 10091, p. 298-310, 2017. ÁSTER JC. Doença de leucócitos, linfonodo, baço e timo. In Kumar V, Abbas AK, Fausto N, Robbins e Cotran. Patologia-Bases patológicas das doenças. 7ª edição. Rio de Janeio: Elsevier, p. 695-746, 2005. BAITSCH L, LEGAT L, BARBA L, et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PloS One. v. 7, n. 2, 2012. BARAVALLE G; PARK H; McSWEENWY M; et al. Ubiquitination of CD86 Is a Key Mechanism in Regulating Antigen Presentation by Dendritic Cells. The Journal of Immunology. v. 187, n. 6, p. 2966-2973, 2011. BARTEE E; MANOSURI M; NERENBERG BTH; et al. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. Journal of Virology. v. 78, p. 1109-1120, 2004. BATTELLA S; COX MC; LA SCALEIA R; et al. Peripheral blood T cell alterations in newly diagnosed diffuse large B cell lymphoma patients and their long‑term dynamics upon rituximab‑based chemoimmunotherapy. Cancer Immunology Immunotherapy. v. 66, n. 10, p. 1295-1306, 2017. BELL RB; FENG Z; BIFULCO CB; et al. Immunotherapy. Oral, Head, Neck Oncology and Reconstructive Surgery. p. 314-340, 2018. BOURGENOIS-DAIGNEAULT MC; THIBODEAU J. Autoregulation of MARCH1 expression by dimerization and autoubiquitination. The Journal of Immunology. v. 188, n. 10, p. 4959-4970, 2012. BUCHBINDER EI; DESAI A. CTLA-4 and PD-1 pathways. Similarities, differences and implications of their inhibition. American Journal of Clinical Oncology. v. 39, n. 1, p. 98-106, 2016. BUSTIN SA; BENES V; GARSON JA; et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemestry. v. 55, n. 4, p. 611-622, 2009. CAO J; ZOU L; LUO P; et al. Increased production of circulating soluble co-stimulatory molecules CTLA-4, CD28 and CD80 in patients with rheumatoid arthritis. International Immunopharmacology. v. 14, n. 4, p. 585-592, 2012. CARRENO BM; BENNET F; CHAU TA; et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. The Journal of Immunology. v. 165, n. 3, p. 1352-1356, 2000. COLUCCI F; TRAHERNE J. Killer-cell immunoglobulin-like receptors on the cusp of modern immunogenetics. Immunology. v. 152, n. 4, p. 556-561, 2017. CORCORAN K; JABBOUR M; BHAGWNDIN C; et al. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane –associated RING-CH-1 (MARCH1). The Journal of Biological Chemistry. v. 286, n. 43, p. 37168-37180, 2011. COX MC; BATTELLA S; SCALEIA RL; et al. Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients. Oncoimmunology. v. 4, n. 3, 2015. CHANG LC; CHEN TP; KUO WK; et al. The Protein Expression of PDL1 Is Highly Correlated with Those of eIF2α and ATF4 in Lung Cancer. Disease Markers. doi: 10.1155/2018/5068701. eCollection 2018, 2018. CHEN L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nature Reviews Immunology. v. 4, n. 5, p. 336-347, 2014. CHEN X; LIU S; WANG L; et al. Clinical significance of B7-H1 (PD-L1) expression in human acute leukemia. Cancer Biology & Therapy. v. 7, n. 5, p. 622-627, 2008. CHEN X; SHAO Q; HAO S; et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. v. 8, n. 8, p. 13703-13715, 2017. CLEMENTI R; DAGNA L; DIANZANI U; et al. Inherited perforin and Fas mutations in a patient with autoimmune lymphoproliferative syndrome and lymphoma. New England Journal of Medicine. v. 351, n. 14, p. 1419-1424, 2004. DADI S; CHHANGAWALA S; WHITLOCK BM; et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell. v. 164, p. 365-377, 2016. DILLY-FELDIS M, ALADJIDI N, REFAIT JK, PARRENS M, DUCASSOU S, RULLIER A. Expression of PD-1/PD-L1 in children's classical Hodgkin lymphomas. Pediatr Blood Cancer. 2019 Jan 13:e27571. GREENFIELD EA; NGUYEN KA; KUCHROO VK. CD28/B7 coestimulation: a review. Critical Reviews in Immunology. v. 18, n. 5, p. 389-418, 1998. HILMENYUK T; RUCKSTUHL CA; HAROYZ M; et al. T cell inhibitory mechanisms in a model of aggressive Non-Hodgkin's Lymphoma. Oncoimmunology. v. 7, n. 1, e1365997, 2018. HEKIMGIL, M; CAGIRGAN S; PEHLIVAN M; et al. Immunohistochemical detection of CD 95 (Fas) & Fas ligand (Fas-L) in plasma cells of multiple myeloma and its correlation with survival. Leukemia and Lymphoma. v. 47, n. 2, p. 271-280, 2006. HEUSEL JW; WESSELSCHMIDT RL; SHRESTA S; et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. v. 76, p. 977-987, 1994. HORLAD H; OHNISHI K; MA C; et al. TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma. Oncology Letters. v. 12, n. 2, p. 1519-1524, 2016. HUANG, X; BAI X; CAO Y; et al. Lymphoma endothelium preferentially express TIM-3 and facilitates the progression of lymphoma by mediating immune evasion. The Journal of Experimental Medicine. v. 207, n. 3, p. 505-520, 2010. INTHAGARD J; EDWARDS J; ROSEWEIR AK. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers. Clinical Science (London). v. 133, n. 2, p. 181-193, 2019. ISHIDO S; MATSUKI Y; GOTO E; et al. MARCH-I: a new regulator of dendritic cell function. Molecules and Cells. v. 29, n. 3, p. 229-232, 2009. JABERIPOUR M; HABIBAGAHI M; HOSSEINI A; et al. Detection of B cell lymphoma 2, tumor protein 53, and Fas gene transcripts in blood cells of patients with breast cancer. Indian Journal Cancer. v. 47, n. 4, p. 412-417, 2010. KAGI D; VIGNAUX F; LEDERMANN B; et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. V. 265, n. 5171, p. 528-530, 1994. KAMARASHEV, J; BURG, G; MINGARI, M.C; et al.. Differential expression of cytotoxic molecules and killer cell inhibitory receptors in CD8+ and CD56+ cutaneous lymphomas. The American Journal of Pathology. v.158, n. 5, p. 1593-1598, 2001. KARACHALIOU N; CAO MG; TEIXIDO C; et al. Understanding the function and dysfunction of the imune system in lung cancer: the role of immune checkpoints. Cancer Biology & Medicine. v. 12, n. 2, p. 79-86, 2015. KIM R; EMI M; TANABE K; et al. The role of Fas ligand and transforming growth factor β in tumor progression. Cancer Cytopathology. v. 100, n. 11, 2004. KIM N; KIM HS. Targeting Checkpoint receptors and molecules for therapeutic modulation of natural killer cells. Frontiers in Immunology. v. 9, 2018. KIYASU J; MIYOSHI H; HIRATA A; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. v.126, n. 9, p. 2193-2201, 2015. KYLE RA; GERTZ MA; WITZIG TE; et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proceedings. n. 78, v. 1, p. 21-33, 2003. KONG Y; ZHANG J; CLAXTON DF; et al. PD-1(hi)TIM-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer Journal. v. 5, 2015. KONJEVIC G; JURISIC V; JOVIC V; et al. Investigation of NK cell function and their modulation in different malignancies. Immunologic Research. v. 52, n. 1-2, p. 139-156, 1999. LI J; NI L; DONG C. Immune checkpoint receptors in cancer: redundant by design? Current Opinion in Immunology. v.45, p. 37-42, Epub 2017 Feb 10, 2017. LIAO Z; LV X; LIU S; et al. Different aberrante expression. Pattern of imune checkpoint receptors in patients with PTCL and NK/T-CL. Asia-Pacific Journal of Clinical Oncology. p. 1-7, 2018. LINSLEY OS; BRADSHAW J; GREENE J; et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. v. 4, p. 535-543, 1996. LINSLEY OS; GREENE JL; BRADY W; et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. v. 1, p. 793-801, 1994. LORD SJ; RAJOTTE RV; KORBUTT GS; et al. Granzyme B: a natural born killer. Immunology Reviews. v. 193, n. 1, p. 31-38, 2003. MACFARLENE AW; JILLAB M; SMITH MR; et al. NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors. Oncoimmunology. v. 6, n. 7, eCollection, 2017. MALMBERG KJ; CARLSTEN M; BJORKLUND A; et al. Natural killer cell-mediated immunosurveillance of human cancer. Seminars in Immunology. v. 31, 2017. MANSOUR A; ELKHODARY T; DARWISH A; et al. Increased expression of costimulatory molecules CD86 and sCTLA-4 in patients with acute lymphoblastic leukemia. Leukemia & Lymphoma. v. 55, n. 9, p. 2120-2124, 2014. MARGOLIN K. Introduction to the role of the immune system in melanoma. Hematology/Oncology Clinics of North America. v. 28, n. 3, p. 537-558, 2014. MARTÍNEZ-LOSTAO L; ANEL A; PARDO J. How do cytotoxic lymphocytes kill cancer cells? Clinical Cancer Research. v. 21, n. 22, p. 5047-5056, 2015. MATSUKI Y; MHUMURA-HOSHINO M; GOTO E; et al. Novel regulation of MHC class II function in B cells. The EMBO Journal. v. 26, n. 3, p. 846-854, 2007. MAZZASCHI G; FACCHINETTI F; MISSALE G; et al. The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer. n. 127, p. 153-163, 2019. MENIAWY TM; LAKE RA; McDONNEL AM; et al. PD-L1 on peripheral blood T lymphocytes is prognostic in patients with non-small cell lung cancer (NSCLC) treated with EGFR inhibitors. Lung Cancer. v. 93, p. 9-16, 2016. MELLOR-HEINEKE; VILLANUEVA J; JORDAN MB; et al. Elevated Granzyme B in Cytotoxic Lymphocytes is a Signature of Immune Activation in Hemophagocytic Lymphohistiocytosis. Frontiers of Immunology. v. 4, n. 72, doi: 10.3389/fimmu.2013.00072. eCollection, 2013. MEIRAV K; GINETTE S; TAMAR T; et al. Extrafollicular PD1 and Intrafollicular CD3 Expression Are Associated With Survival in Follicular Lymphoma. Clinical Lymphoma, Myeloma & Leukemia. v. 17, n. 10, p. 645-649, 2017. MINISTÉRIO DA SAÚDE. Instituto Nacional de Câncer. A situação do câncer no Brasil. INCA. Rio de Janeiro 2006. MINISTÉRIO DA SAÚDE. Instituto Nacional de Câncer. Estimativa 2018: incidência de câncer no Brasil. INCA. Rio de Janeiro 2017. Disponível em <https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-incidencia-de-cancer-no-brasil-2018.pdf>. MIYOSHI H; KIYASU J; YOSHIDA N; et al. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood. v.128, n. 10, p. 1374-1381, 2016. MULLBACHER, A; WARING, P; THA HLA, R; et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proceedings of the National Academy of Sciences. v.96:13950–13955, 1999. OCAÑA-GUZMAN R; TORRE-BOUSCOULET L; et al. TIM-3 regulates distinct functions in macrofhages. Frontiers in Immunology. v. 7, n. 229, 2016. OSÍNSKA I; POPKO K; DEMKOW U. Perforin: a important player in immune response. Central European Journal of Immunology. v. 39, n. 1, p. 109-115, 2014. PAULA e SILVA, RO; BRANDÃO KMA; PINTO PVM; et al. Mieloma múltiplo: características clínicas e laboratoriais ao diagnóstico e estudo prognóstico. Revista Brasileira de Hematologia e Hemoterapia. v. 31, n. 2, p. 63-68, 2009. PARDOLL DM. The blockade of immune checkpoints in câncer immunotherapy. Nature Reviews Cancer. v. 12, n. 4, p. 252-264, 2012. PFEFFER CM; SINGH ATK. Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences. v.19, n. 2, p. 448, 2018. PIPKIN M.E; RAO A; LICHTENHELD M.G. The transcriptional control of the perforin locus. Immunological Reviews. v. 235, n. 1, p. 55-72, 2010. PODACK ER; KONIGSBERG PJ. Cytolytic T cell granules. Isolation, structural, biochemical and functional characterization. Journal of Experimental Medicine. v. 160, n. 3, p. 695-710, 1984. REN X; WU H; LU J; et al. PD1 protein expression in tumor infiltrated lymphocytes rather than PDL1 in tumor cells predicts survival in triple-negative breast cancer. Cancer Biology & Therapy. v. 19, n. 5, p. 373-380, 2018. REVELL, P.A; GROSSMAN, W.J; THOMAS, D.A; CAO, X; BEHL, R; RATNER, J.A; et al. Granzyme B and the downstream granzymes C and/or F are important for cytotoxic lymphocyte functions. The Jounal of Immunology. v.174:2124–2131, 2005. ROSENBLATT J; AVIGAN D. Targeting the PD-1/PD-L1 axis in multiple myeloma: a dream or a reality?. Blood. v.129, p. 275-279, 2017. SANCHEZ-BEATO M; SANCHEZ-AGUILERA A; PIRIS MA; et al. Cell cycle deregulation in B-cell lymphomas. Blood. v. 101, n. 4, p. 1220-1235, 2003. SOUZA BMB; DE VITO FB; CALADO ML; et al. Evaluation of the cytotoxic response mediated by perforin and granzyme B in patients with non-Hodgkin lymphoma. Leukemia & Lymphoma. V. 59, n. 1, p. 214-220, 2018. SHANKLAND KR; ARMITAGE JO; HANCOCK BW. Non-Hodgkin lymphoma. Lancet. v. 380, n. 9844, p. 848-857, 2012. SHRESTA, S; GRAUBERT, T.A; THOMAS, D.A; et al. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity. v.10:595–605, 1999. SMYTH M.J; THIA K.Y; STREET S.E; et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. The Journal of Expreimental Medicine. v. 192, n. 5, p. 755-60, 2000. SPRANGER S; SPAAPEN RM; ZHA Y; et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Science Translational Medicine. 2013; v. 5, n. 200, 2013. SWERDLOW SH, CAMPO E, HARRIS NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2008. TAI YT; CHO SF; ANDERSON KC. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Frontiers in Immunology. v. 10, n. 9, eCollection 2018. TAUBE JM; KLEIN A; BRAHMER JR; et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clinical Cancer Research. v. 20, p. 5064-5074, 2014. TORREZINI T; ANTHONAZIO DA. Imunovigilância e Imunoedição de Neoplasias: Implicações Clínicas e Potencial Terapêutico. Revista Brasileira de Cancerologia. v. 54, n. 1, p. 63-77, 2008. THE LEUKEMIA AND LYMPHOMA SOCIETY. Facts and statistics. 2018. The Leukemia and Lymphoma Society. Disponível em <www.lls.org/facts-and-statistics/facts-and-statistics-overview>. Acesso em 29 de novembro de 2018. THIBODEAU J; BOURGEOIS-DAIGNEAULT MC; HUPPE G; et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. European Journal of Immunology. v. 38, n. 5, p. 1225-1230, 2008. TRAPANI JA. Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore‑forming protein, perforin, and the serine protease, granzyme B. Internal Medicine Journal. v. 25, n. 6, p. 793-799, 1995. TRAPANI JA. Granzymes, cytotoxic granules and cell death: the eraly work of Dr. Jurg Tschopp. Cell Death & Differentitation. v.19, n. 1, p. 21-27, 2012. TSCHOPP J; NABHOLZ M. Perforin-mediates target cell lysis by cytolytic T lymphocytes. Annual Review of Immunology. v. 8, p. 279-302, 1990. TURNER CT; LIM D; GRANVILLE DJ. Granzyme B in skin inflammation and disease. Matrix Biology. 2017, https://doi.org/10.1016/j.matbio.2017.12.005. VAN DEN BROEK M.E; KÄGI D; OSSENDORP F; et al. Decreased tumor surveillance in perforin-deficient mice. The Journal of Experimental Medicine. v. 184, n. 5, p. 1781-90, 1996. VAN ELSAS A; SUTMULLER RP; HURWITZ AA; et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. The Journal of Experimental Medicine. v. 194, p. 481-489, 2001. VEJBAESYA S; SAE-TAM P; KHUHAPINANT A; et al. Killer cell immunoglobulin-like receptors in Thai patients with leukemia and diffuse large B-cell lymphoma. Human Immunology. v. 75, n. 7, p. 673-676, 2014. VERHAGE M; SORENSEN J.B. Vesicle docking in regulated exocytosis. Traffic. v.9, n. 9, p. 1414-24, 2008. VILLA-MORALES M; GOZÁLEZ-GUGEL E; SHAHBAZI MN; et al. Modulation of the Fas-apoptosis-signalling pathway by fucntional polymorfphisms at Fas, FasL and Fadd and their implication in T-cell lymphoblastic lymphoma susceptibility. Carcinogenesis. v. 31, n. 12, p. 2165-2171, 2010. VOSKOBOINIK I, WHISSTOCK JC, TRAPANI JA. Perforin and granzymes: function, dysfunction and human pathology. Nature Reviews Immunology. v.15, n. 6, p. 388-400, 2015. WALDHAUER I; STEINLE A. NK cells and cancer immunosurveillance. Oncogene. v. 27, n. 45, p. 5932-5943, 2008. WANG, S.; CHEN, L. lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol, v. 1, n.1, p. 37-42, 2004. WEBER M; WEHRLAN F; BARAN C; et al. PD-L1 expression in tumor tissue and peripheral blood of patients with oral squamous cell carcinoma. Oncotarget. v. 8, n. 68, p. 112584-112597, 2017. WERNER JM; KUHL S; STAVRINOU P; et al. Expression of FAS-L Differs from Primary to Relapsed Low-grade Gliomas and Predicts Progression-free Survival. Anticancer Research. v. 37, n. 12, p. 6639-6648, 2017. WILLENBRING RC; JOHNSON AJ. Finding a balance between protection and pathology: the dual role of perforin in human disease. International Journal of Molecular Sciences. v. 18, n. 8, p. 1608, 2017. YANG, ZZ; NOVAK A.N; ZIESMER S.C; et al. Attenuation of CD8+ T-Cell Function by CD4+ CD25+ Regulatory T Cells in B-Cell Non-Hodgkin’s Lymphoma. Cancer Research. v.66, n.20, p. 10145-10152, 2006. YANG ZZ; GROTE DM; ZIESMER SC; et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. The Journal of Clinical Investigation. v. 122, n. 4, p. 1271-1282, 2012. YANG H; BUESO-RAMOS C; DINARDO C; et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. v. 28, n. 6, p. 1280-1288, 2014. XAGORARIS I; PATERAKIS G; ZOLOTA B; et al. Expression of Granzyme B and Perforin in Multiple Myeloma. Acta Haematologica. v. 105, n. 3, p. 125-129, 2001. ZELLE-RIESER C; THANGAVADIEL S; BIEDERMANN R; et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. Journal of Hematology & Oncology. V. 9, n. 1, 2016. ZAGO MA; FALCÃO RP; PASQUINI P. Tratado de Hematologia. São Paulo: Ed. Atheneu, 2014. ZENG Z; SHI F; ZHOU L; et al. Upregulation of Circulating PD-L1/PD-1 Is Associated with Poor Post-Cryoablation Prognosis in Patients with HBV-Related Hepatocellular Carcinoma. PloS One. v. 6, n. 9, 2011. ZHANG X; GAO L; MENG K; et al. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma. Cellular Immunology. [Epub ahead of print], 2018. ZHAO S; ZHANG M; ZHANG Y; et al. The prognostic value of programmed cell death ligand 1 expression in non-Hodgkin lymphoma: a meta-analysis. Cancer Biology & Medicine. v. 15, n. 3, p. 290-298, 2018. ZHOU Q; MUNGER ME; VEENSTRA RG; et al. Coexpression of TIM-3 and PD-1 identifies a CD8+ T cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. v. 117, n. 17, p. 4501-4510, 2011. |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde Brasil UFTM Programa de Pós-Graduação em Ciências da Saúde |
publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde Brasil UFTM Programa de Pós-Graduação em Ciências da Saúde |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFTM instname:Universidade Federal do Triangulo Mineiro (UFTM) instacron:UFTM |
instname_str |
Universidade Federal do Triangulo Mineiro (UFTM) |
instacron_str |
UFTM |
institution |
UFTM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
collection |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM) |
repository.mail.fl_str_mv |
bdtd@uftm.edu.br||bdtd@uftm.edu.br |
_version_ |
1813013331232948224 |