Polimorfismos do gene TGF-β1 na pré-eclâmpsia

Detalhes bibliográficos
Autor(a) principal: HORTOLANI, Andrezza Cristina Cancian
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/645
Resumo: A pré-eclâmpsia (PE) é uma desordem da gestação humana, caracterizada por hipertensão (pressão arterial sistólica ≥ 140mmHg e pressão arterial diastólica ≥ 90mmHg) e proteinúria (> 300mg/24horas ou ≥ 1+ de proteína detectada no exame de urina tipo I), que ocorre após a 20º semana de gravidez. É responsável por 5 a 8% das complicações que ocorrem durante a gravidez, sendo 10 a 18% em países subdesenvolvidos. Alguns estudos mostram que o fator genético é responsável por 50% dos casos de PE. O Fator de Crescimento Transformante Beta-1 (TGF-β1) pode contribuir para o surgimento dos sinais clínicos de PE pelo fato de influenciar a placentação superficial inadequada, levar a uma disfunção endotelial e auxiliar no surgimento de hipertensão e proteinúria, que são os sinais clínicos mais conhecidos dessa patologia. Por isso, este estudo tem como objetivo investigar os polimorfismos do gene TGF- β1, posições -509 (C/T) e -800 (G/A), em uma população brasileira, na região de Uberaba, Minas Gerais. Participaram desse estudo 257 mulheres, sendo 88 com PE e 169 do grupo controle. Todas as participantes assinaram o Termo de Consentimento Livre e Esclarecido (TCLE) e responderam a uma entrevista sobre dados clínicos e demográficos. Os polimorfismos do gene TGF-β1, posições C-509T e G-800A, foram investigados por PCR em tempo real. Não houve associação genotípica do polimorfismo do gene TGF-β1, posição C- 509T (2=0,312; p=0,855) e alélica (2=0,154; p=0,403) e o desenvolvimento da PE. Para o polimorfismo do gene TGF-β1, posição G-800A, não houve associação entre os genótipos (2=0,744; p=0,689) e nem para a presença do alelo polimórfico A (2=0,394; p=0,374) e o desenvolvimento da PE. Na análise de regressão logística, a recorrência familiar foi estatisticamente significativa, onde mulheres que relataram histórico familiar de PE possuem dezessete vezes mais risco de desenvolver a doença em relação a mulheres sem histórico familiar. Também foi observado que a primiparidade confere um risco de dezenove vezes de desenvolver PE em relação a mulheres que possuem mais de duas gestações. Portanto, esse estudo sugere que os polimorfismos avaliados não predispõem ao desenvolvimento da PE nessa população. Entretanto, necessita-se de mais estudos genéticos para auxiliar na compreensão do desenvolvimento da PE.
id UFTM_04a015e8b65f27f3d2c67d362ea06a10
oai_identifier_str oai:bdtd.uftm.edu.br:tede/645
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling Polimorfismos do gene TGF-β1 na pré-eclâmpsiaPré-eclâmpsia.Polimorfismos Genéticos.Fator de Crescimento Transformante Beta-1Preeclampsia.Genetic Polymorphisms.TGF-β1.Genética Molecular e MicroorganismosA pré-eclâmpsia (PE) é uma desordem da gestação humana, caracterizada por hipertensão (pressão arterial sistólica ≥ 140mmHg e pressão arterial diastólica ≥ 90mmHg) e proteinúria (> 300mg/24horas ou ≥ 1+ de proteína detectada no exame de urina tipo I), que ocorre após a 20º semana de gravidez. É responsável por 5 a 8% das complicações que ocorrem durante a gravidez, sendo 10 a 18% em países subdesenvolvidos. Alguns estudos mostram que o fator genético é responsável por 50% dos casos de PE. O Fator de Crescimento Transformante Beta-1 (TGF-β1) pode contribuir para o surgimento dos sinais clínicos de PE pelo fato de influenciar a placentação superficial inadequada, levar a uma disfunção endotelial e auxiliar no surgimento de hipertensão e proteinúria, que são os sinais clínicos mais conhecidos dessa patologia. Por isso, este estudo tem como objetivo investigar os polimorfismos do gene TGF- β1, posições -509 (C/T) e -800 (G/A), em uma população brasileira, na região de Uberaba, Minas Gerais. Participaram desse estudo 257 mulheres, sendo 88 com PE e 169 do grupo controle. Todas as participantes assinaram o Termo de Consentimento Livre e Esclarecido (TCLE) e responderam a uma entrevista sobre dados clínicos e demográficos. Os polimorfismos do gene TGF-β1, posições C-509T e G-800A, foram investigados por PCR em tempo real. Não houve associação genotípica do polimorfismo do gene TGF-β1, posição C- 509T (2=0,312; p=0,855) e alélica (2=0,154; p=0,403) e o desenvolvimento da PE. Para o polimorfismo do gene TGF-β1, posição G-800A, não houve associação entre os genótipos (2=0,744; p=0,689) e nem para a presença do alelo polimórfico A (2=0,394; p=0,374) e o desenvolvimento da PE. Na análise de regressão logística, a recorrência familiar foi estatisticamente significativa, onde mulheres que relataram histórico familiar de PE possuem dezessete vezes mais risco de desenvolver a doença em relação a mulheres sem histórico familiar. Também foi observado que a primiparidade confere um risco de dezenove vezes de desenvolver PE em relação a mulheres que possuem mais de duas gestações. Portanto, esse estudo sugere que os polimorfismos avaliados não predispõem ao desenvolvimento da PE nessa população. Entretanto, necessita-se de mais estudos genéticos para auxiliar na compreensão do desenvolvimento da PE.Preeclampsia (PE) is a human pregnancy disorder characterized by hypertension (systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥90 mmHg) and proteinuria (> 300 mg / 24 hours or ≥ 1+ protein detected in the urine-type I test that occurs after 20 weeks of pregnancy. It is responsible for 5 to 8% of the complications that occur during pregnancy, reaching 10 to 18% when compared to underdeveloped countries. Some studies show that the genetic factor is responsible for 50% of PE cases. Transforming Growth Factor Beta-1 (TGF- β1) may contribute to the appearance of clinical signs of PE by influencing inadequate surface placentation, leading to endothelial dysfunction and assisting in the onset of hypertension and proteinuria, which are the most known signs of this pathology. Therefore, this study aims to investigate TGF-β1 gene polymorphisms, positions -509 (C / T) and -800 (G / A), in a Brazilian population, in the region of Uberaba, Minas Gerais. 257 women were included, 88 with PE and 169 from control group. All participants signed the Informed Consent Form (TCLE) and answered an interview about clinical and demographic data. TGF-β1 gene polymorphisms, positions C-509T and G-800A, were investigated by real-time PCR. There was no genotypic association of TGF-β1, C-509T (2= 0.312, p = 0.855) and allelic polymorphism (2= 0.154, p = 0.403) and the development of PE. In the logistic regression analysis, family recurrence was statistically significant, where women who reported a family history of PE had seven times the risk of developing the disease in relation to women with no family history. . It has also been observed that first pregnancy confers an eight-fold risk of developing PE in relation to women who have more than two pregnancies. Therefore, this study suggests that the polymorphisms evaluated do not predispose to the development of PE in this population. Research needs to be done to confirm the data obtained here, as well as large-scale genome studies and functional studies.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeBALARIN, Marly Aparecida Spadotto06208176847http://lattes.cnpq.br/9825231661876909TANAKA, Sarah Cristina Sato Vaz33786967881http://lattes.cnpq.br/5778364857984906HORTOLANI, Andrezza Cristina Cancian2019-05-03T18:57:13Z2017-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfHORTOLANI, Andrezza Cristina Cancian. Polimorfismos do gene TGF-β1 na pré-eclâmpsia. 2017. 55f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.http://bdtd.uftm.edu.br/handle/tede/645porACHARYA, A; et al. Acute kidney injury in pregnancy-current status. Adv Chronic Kidney Dis, v.20(3), p.215-222, 2013. ACOSTA-RODRIGUEZ, E.V; et al. Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17–producing human T helper cells. Nature immunology, v.8, p.942-949, 2007. AGUILAR-DURAN, M; et al. Haplotype analysis of TGF-β1 gene in a preeclamptic population of northern Mexico. Pregnancy Hypertens, v.4(1), p.14-18, 2014. ALUVIHARE, V.R, KALLIKOURDIS, M, BETZ, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol, v.5(3), p.266–271, 2004 AMANI, D; et al. The promoter region (−800, −509) polymorphisms of transforming growth factor-_1 (TGF-β1) gene and recurrent spontaneous abortion. J Reprod Immunol, v.62(1-2), p.159-166, 2004. American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists task force on hypertension in pregnancy. Obstet Gynecol, v.122(5), p.1122, 2013. ANTONIPILLIAI, I; et al. Transforming growth factor-beta is a renin secretagogue at picomolar concentrations. Am J Physiol, v.265(4 Pt 2), p.537-41, 1993. AYORINDE, A.A; BHATTACHARYA, A. Inherited predisposition to preeclampsia: Analysis of the Aberdeen intergenerational cohort. Pregnancy Hipertens, v.8, p.37-41, 2017. BENYO, D.F, MILES, T.M, CONRAD, K.P. Hypoxia stimulates cytokine reproduction by villous explants from the human placenta. J Clin Endocrinol Metab, v.82(5), p.1582-1588, 1997. BERRY, C; ATTA, M.G. Hypertensive disorders in pregnancy. World J Nephrol, v.6(5), p.418-28, 2016. BILATE, A.M; LAFAILLE, J.J. Induced CD4(+)Foxp3(+) regulatory T Cells in immune tolerance. Annu Rev Immunol, v.30, p.733-758, 2012. BLOBE, G.C; SHIEMANN, W.P; LODISH, H.F. Role of transforming growth factor beta in human disease. N Engl J Med, v.342, p.1350-1358, 2000. BOMBELL, S; McGUIRE, W. Tumor necrosis factor (-308A) polymorphism in preeclampsia: meta-analysis of 16 case-control studies. Aust N Z J Obstet Gynaecol, v.48(6), p. 547-551, 2008. BORDER, W.A; NOBLE, N.A. Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension, v.31(1 Pt2), p.181, 1998. BORZYCHOWSKI, A.M; et al. Changes in systemic type 1 and type 2 immunity in normal pregnancy and preeclampsia may be mediated by natural killer cells. Eur J Immunol, v.35(10), p.3054-3063, 2005. BOWEN, J.M; et al. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta, v.23(4), p.239-56, 2002. BURTON, G.J; JAUNIAUX, E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig, v.11(6), p.342-52, 2004. BURTON, G.J; JAUNIAUX, E; WATSON, A.L. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol, v.181(3), p.718-24, 1999. BROSENS, J.J; et al. A role for menstruation in preconditioning the uterus for successful pregnancy. Am J Obstet Gynecol, v.200(6), p.615, 2009. CANNIGIA, I; et al. Regulation of trophoblast differentiation by TGF-β1 and TGF-β3 via endoglin. Placenta, v.17, p.36, 1996. CHAN, J. C; et al. The central roles obesity-associated dyslipidaemia, endothelial activation and cytokines in the Metabolic Syndrome-an analysis by structural equation modeling. Int J Obes Relat Metab Disord, v. 26, p.994-1008, 2002. CHEN, W; et al. Conversion of peripheral CD4+ CD252 naive T cells to CD4+ CD25+ regulatory T cells by TGF-b induction of transcription factor Foxp3. J Exp Med, v.198(12), p.1875-86, 2003. CLARK, A.G. The Role of Haplotypes in Candidate Gene Studies. Genet Epidemiol, v.27(4), p.321-33, 2004. CLARK, D.A; COKER, R. Transforming growth factor beta (TGF-beta). Int J Biochem Cell Biol, v.30, p.293-298, 1998. CNATTINGIUS, S; et al. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A, v.130A(4), p.365-371, 2004. CORNELIUS, D.C; et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension, v.62(6), p.1068-73, 2013. CROME, S.Q., WANG, A.Y., LEVINGS, M.K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol, v.159(2), p.109-19, 2010. CUNHA, V.M.P et al. Polimorfismos geneticos do fator de crescimento do endotélio vascular na pré-eclampsia. Revista Brasileira de Ginecologia e Obstetrícia, v.33, p.158-163, 2011. DAHER, S; et al. Cytokines in recurrent pregnancy loss. J Reprod Immunol, v.62, p.151-7, 2004. DAVIES, E.L; BELL, J.S; BHATTACHARYA, S. Preeclampsia and preterm delivery: a population-based case–control study. Hypertens Pregnancy, v.35(4), p.510-19, 2016. DEEPTHI, G; et al. TGFB1 Functional Gene Polymorphisms (C-509T and T869C) in the Maternal Susceptibility to Pre-eclampsia in South Indian Women. Scand J Immunol, v.82(4), p.390-7, 2015. DHARIWAL, N.K; LYNDE, G.C. Update in the Management of Patients with Preeclampsia. Anesthesiol Clin, v.35(1), p.95-106, 2017. DHILLION, P; et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr, v.303(4), p.353-358, 2012. DIDION, S.P.; et al. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension, v.54(3), p.619-24, 2009. DOCHERTY, N.G; et al. Transforming growth factor-beta1 (TGF-beta1): a potential recovery signal in the post-ischemic kidney. Ren Fail, v.24(4), p.391-406, 2002. DUCKITT, K; HARRINGTON, D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ, v.330(7491), p.565, 2005. FEIZOLLAHZADEH, S; et al. Promoter region polymorphisms in the transforming growth factor beta-1 (TGFβ1) gene and serum TGFβ1 concentration in preeclamptic and control Iranian women. J Reprod Immunol, v.94(2), p.216-21, 2012. FERRARA, N; DAVIS-SMYTH, T. The biology of vascular endothelial growth factor. Endocr Rev, v.18(1), p.4-25, 1997. GARCÍA-ORTIZ, L; et al. Probable association between preeclampsia/eclampsia and paternal age: a pilot study. Ginecol Obstet Mex, v.79(4), p.190-5, 2011. GATHIRAM P; MOODLEY J. Pre-eclampsia: its pathogenesis and pathophysiolgy. Cardiovasc J Afr, v.27(2), p.71-8, 2016. GENC, H; et al. Transforming growth factor β (TGF-β) levels in otherwise healthy subjects with impaired glucose tolerance. Endokrynol Pol, v.61, p.691-694, 2010. GIULIANI, E.; PARKIN, K.L.; LESSEY, B.A.; YOUNG, S.L. & FAZLEABAS, A.T. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol, v.72(3), p.262-9, 2014. GODIN, I; WYLIE, C.C. TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development, v.113, p.1451-7, 1991. GOLDENBERG, R.L; et al. Epidemiology and causes of preterm birth. Lancet, v.371, p.75- 84, 2008. GRAHAM, C.H; LALA, P.K. Mechanism of control of trophoblast invasion in situ. J Cell Physiol, v.148(2), p.228-34, 1991. GRAINGER, D.J; et al. Genetic control of the concentration of transforming growth factor type beta1. Hum Mol Genet, v.8(1), p.93-97, 1999. GRESSNER, A.M; et al. Roles of TGF-β in hepatic fibrosis. Front Biosci, v.7, p.793-807, 2002. GRIFFITHS, A.J.F. et al. Introdução à Genética. Genética de Populações.10 ed. Rio de Janeiro: Guanabara Koogan, 2013, 556-582 p. GUZOWSKI, D; et al. Analysis of single nucleotide polymorphisms in the promoter region of interleukin-10 by denaturing high performance liquid chromatography. J Biomol Tech, v.16(2), p.154-66, 2005. HAIG, D. Alteration of generations: genetic conflicts of pregnancy. Am J Reprod Immunol, v.35(3), p.226-32, 1996. HARAM, K; et al. Genetic aspects of preeclampsia and the HELLP syndrome. J Pregnancy, v.2, p.1-13, 2014. HARMON, A.C; et al. The role of inflammation in the pathology of preeclampsia. Clin Sci Lond, v.130(6), p.409–419, 2016. HARMON, Q.E; et al. Risk of fetal death with preeclampsia. Obstet Gynecol, v.125(3), p.628-635, 2015. HERNANDEZ-DIAS, S; TOH, S; CNATTINGIUS, S. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ, v.18(338), p.2255, 2009. HERNÁNDEZ-VALENCIA, M; et al. Barrier family planning methods as risk factor which predisposes to preeclampsia. Ginecol Obstet Mex, v.68, p.333–8, 2000. HSIEH, Y.Y; et al. Polymorphism for Transforming Growth Factor Beta 1-509 (TGF-B1- 509): Association with Endometriosis. Biochem Genet, v.43(5-6), p.203-210, 2005. HSU, P; NANAN, R.K.H. Innate and adaptive immune interactions at the foetal-maternal interface in healthy human pregnancy and preeclampsia. Front Immunol, v.28, p.125, 2014. HUPPERTZ, B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension, v.51(4), p.970-975, 2008. IMAMURA, T; et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature, v.389(6651), p.622-6, 1997. IRANI, R.A; et al. Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-alpha signaling. Hypertension, v.55(5), p. 1246– 53, 2010. ITO, T; et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity, v.28(6), p.870–80, 2008. JAUNIAUX, E; POSTON, L; BURTON, G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum Reprod Update, v.12(6), p.747-55, 2006. KAJDANIUK, D; et al. Vascular endothelial growth factor (VEGF) – part 1: in physiology and pathophysiology. Endokrynol Pol, v.62(5), p.444-45, 2011. KALKUNTE, S; et al. Vascular IL-10: a protective role in preeclampsia. J Reprod Immunol, v.88(2), p.165-9, 2011. KATO, Y.; INOUE, H.; YOSHIOKA, U., et al. Effects of transforming growth factor β1, interleukin-1b, tumor necrosis factor a and platelet-derived growth factor on the collagen synthesis and the proliferation of periacinal fibroblastoid cells isolated and cultured from rat pancreatic acini. Pathophysiology, v.3, p.175–179, 1999. KATSI, V; et al. Preeclampsia: What Does the Father Have to Do with It? Curr Hypertens Rep, v.17(8), p.60, 2015. KHADER, Y.S; et al. Preeclampsia in Jordan: incidence, risk factors, and its associated maternal and neonatal outcomes. J Matern Fetal Neonatal Med, v.8, p.1-7, 2017. KHAN, K.S; et al. WHO analysis of causes of maternal death: A systematic review. Lancet, v.367(9516), p.1066-74, 2006. KNIGHT, M. Eclampsia in the United Kingdom 2005. BJOG, v.114, p.1072, 2007. KRZEMIEN, S; KNAPCZYK, P. Current review on the role of transforming growth factor beta (TGF-beta) in some pathological disorders. Wiad Lek, v.58(9-10), p.536-9, 2005. LALA, P.K; CHAKRABORTY, C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta, v. 24(6), p.575–87, 2003. LARESGOITI-SERVITJE, E; GOMEZ-LOPEZ, N; OLSON, D.M. An immunological insight into the origins of pre-eclampsia. Hum Reprod Update, v.16(5), p.510-24, 2010. LEE, J.L; et al. Transforming growth factor-b1 gene polymorphisms in Korean women with endometriosis. Am J Reprod Immunol, v.66, p.428-34, 2011. LI, X; SHEN, L; TAN, H. Polymorphisms and plasma level of transforming growth factorbeta 1 and risk for pre-eclampsia: a systematic review. PLoS ONE, v.9(5), p.1-8, 2014. LOEYS, B.L; et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med, v.355(8), p.788-98, 2006. LUEDECKING, E.K; et al. Analysis of genetic polymorphisms in the transforming growth factor beta1 gene and the risk of Alzheimer’s disease. Hum Genet, v.106(5), p.565–569, 2000. LUDVIKSSON, B.R; SEEGERS, D; RESNICK, A.S. The effect of TGF-beta-1 on immune responses of naive versus memory CD4+ Th1/Th2. Eur J Immunol, v.30(7), p.2101-11, 2000. LYKKE, J.A; PAIDAS, M.J; LANGHOFF-ROOS, J. Recurring Complications in Second Pregnancy. Obstet Gynecol, v.113 (6), p.1217-1224, 2009. MAITRA, U; et al. Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol, v.182(9), p.5763-9, 2009. MAREK, A; et al. TGF-β (transforming growth factor-β) in chronic inflammatory conditions – a new diagnostic and prognostic marker? Med Sci Monit, v.8(7), p.145–151, 2002. MARSHALL GRAVES, J.A. Genomic imprinting, development and disease -- is preeclampsia caused by a maternally imprinted gene? Reprod Fertil Dev, v.10(1), p.23–9, 1998. MASSAGUÉ, J. The transforming growth factor-beta family. Annu Rev Cell Biol, v.6, p. 597–641,1990. MASSAGUÉ, J. TGF-beta signal transduction. Annu Rev Biochem, v.67, p.753-91, 1998. MASSAGUÉ, J.; WOTTON, D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J, v.19(8), p.1745-54, 2000. MATTHIESENA, L; et al. Immunology of preeclampsia. Chemich Immunol Allerg, v.89, p.49-61, 2005. MATTSSON, K; et al. Maternal Smoking during Pregnancy and Daughters’ Preeclampsia Risk. PloS ONE, v.10(12), p.1-13, 2015. MILNE, F; et al. The pre-eclampsia community guideline (PRECOG): How to screen for and detect onset of pre-eclampsia in the community. BMJ, v.330(7491), p.576-80, 2005. MINCHEVA-NILSSON, L; BARANOV, V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol, v.72(5), p.440–57, 2014. MOFFETT-KING, A. Natural killer cells and pregnancy. Nat Rev Immunol, v.2(9), p.656- 63, 2002. MOLVAREC, A; et al. Association between tumor necrosis factor (TNF)-alpha G-308A gene polymorphism and preeclampsia complicated by severe fetal growth restriction. Clin Chim Acta, v.392(1-2), p.52-7, 2008. MORENO, M; et al. Atorvastatin attenuates angiotensin II-induced inflammatory actions in the liver. Am J Physiol Gastrointest Liver Physiol, v.296(2), p.147-56, 2008. MORRIS, R.W; KAPLAN, N.L. On the Advantage of Haplotype Analysis in the Presence of Multiple Diseases Susceptibility Alleles. Genetic Epidemiology, v.23(3), p.221-33, 2002. MOUSTAKA, A; HELDIN, C.H. Non-Smad TGF-beta signals. J Cell Sci, v.118, p.3573-84, 2005. MUTTER, W.P; KARUMANCHI, S.A. Molecular Mechanisms of Preeclampsia. National Institute of Health, v.75(1), p.1-8, 2008. MÜTZE, S; RUFNIK-SHÖNEBORN, S; ZERRES, K; RATH, W. Genes and the preeclampsia syndrome. J Perinat Med, v. 36(1), p.154-158, 2007. NAKAO, A; et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, v.389(6651), p.631-5, 1997. NIU, W. Evaluation of Transforming Growth Factor Beta-1 Gene 869T/C Polymorphism with Hypertension: A Meta-Analysis. Int J Hypertens, 2011. NISSAISORAKARN, P; SHARIF, S; JIM, B. Hypertension in Pregnancy: Defining Blood Pressure Goals and the Value of Biomarkers for Preeclampsia. Curr Cardiol Rep, v.18(12), p.131, 2016. ODEGARD, R.A; et al. Preeclampsia and fetal growth. Obstet Gynecol, v.96(6), p.950-5, 2000. PAPANICOLAOU, D.A; et al. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med, v.128(2), p.127-37, 1998. PAULI, J.M; REPKE, J.T. Preeclampsia Short-term and Long-term Implications. Obstet Gynecol Clin North Am, v.42(2), p.299-313, 2015. PEGORARO, R.J; CHIKOSI, A; ROM, L; ROBERTS, C; MOODLEY, J. Methylenetetrahydrofolate reductase gene polymorphisms in black South Africans and the association with preeclampsia. Acta Obstet Gynecol Scand, v.83(5), 2004. PERAÇOLI, J.C; PARPINELLI, M.A. Síndromes Hipertensivas da gestação: identificação de casos graves. Ver Bras Ginecol Obstet, v.27, p.627-34, 2005. PERAÇOLI, M.T; et al. Platelet aggregation and TGF-beta(1) plasma levels in pregnant women with preeclampsia. J Reprod Immunol, v.79(1), p.79-84, 2008. PINHEIRO, M.B; et al. Severe preeclampsia: association of genes polymorphisms and maternal cytokines production in Brazilian population. Cytokine, v.71(2), p.232-7, 2015. PISSETTI, C.W; et al. Protective role of the G allele of the polymorphism in the Interleukin 10 gene (-1082G/A) against the development of preeclampsia. Rev Bras Ginecol Obst, v.36(10), p.456-60, 2014. POWER, L.L; et al. Immunoregulatory molecules during pregnancy and at birth. J Reprod Immunol, v.56(1-2), p.19-28, 2002. QUINN, K.H; et al. The unique pathophysiology of early-onset severe preeclampsia: role of decidual T regulatory cells. J Reprod Immunol, v.91(1-2), p.76–82, 2011. REDMAN, C.W; SARGENT, I.L. Latest advances in understanding preeclampsia. Science, v.308(5728), p.1592-4, 2005. REDMAN, C.W; SARGENT, I.L. Immunology of pre-eclampsia. Am J Reprod Immunol, v.63, p.534–543, 2010. RIZZINO, A. Transforming growth factor-p: Multiple effects on cell differentiation and extracellular matrices. Dev Biol, v.130(2), p.411-22, 1988. ROBERTS, A.B; et al. New class of transforming growth factors potentiated by epidermal growth factor: Isolation fromnon-neoplastic tissues. Proc Natl Acad Sci, v.78(9), p.5339–43, 1981. ROBERTS, A.B; SPORN, M.B. The transforming growth factor: Peptide Growth Factors and Their Receptors. New York: Springer-Verlag, p.419-472, 1990. ROBERTSON, S.A; et al. Transforming growth factor beta--a mediator of immune deviation in seminal plasma. J Reprod Immunol, v.57(1-2), p.109-28, 2002. ROJAS-SUAREZ, J; VIGIAL DE GRACIA, P. Pre-eclampsia-eclampsia admitted to critical care unit. J Matern Fetal Neonatal Med, v.25(10), p.2051-4, 2012. ROS, H.S; et al. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet, v.91(4), p.256–260, 2000. ROTH, I., FISHER, S.J. IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol, v.205(1), p.194-204, 1999. SAFTLAS, A.F; et al. Cumulative exposure to paternal seminal fluid prior to conception and subsequent risk of preeclampsia. J Reprod Immunol, v.101-102, p.104-10, 2014. SAIGAL, S; DOYLE, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, v.371(9608), p.261-9, 2008. SAITO, S. Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia. Immunol Cell Biol, v.88(6), p.615–7, 2010. SAITO, S; SAKAI, M. Th1/Th2 balance in preeclampsia. J Reprod Immunol, v.59, p.161– 73, 2003. SAKAGUCHI, S; et al. Regulatory T cells and immune tolerance. Cell, v.133(5), p.775–787, 2008. SAMBROOK, J; FRITSCH, E. F; MANIATIS, T. E. Molecular Cloninig, a laboratory manual New York Cold Spring Harbor 1989. SASAKI, Y; et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol, v.149(1), p.139–145, 2007. SASAKI, Y; et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod, v.10(5), p.347–53, 2004. SHARKEY, D; et al. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol Hum Reprod, v.13(7), p.491- 501, 2007. SKJAERVEN, R; et al. Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ, v.331(7521), p.877, 2005. SHULL, M.M; et al. The importance of transforming growth factor-beta 1 in immunological homeostasis as revealed by gene ablation in mice. In C Jacob (ed): “Overexpression and Knockout of Cytokines in Transgenic Mice.” Academic Press La, p135-159, 1994. SIBAI, B.M. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol, v.102(1), p.181-192, 2003. SIMPSON H; et al. Transforming growth factor beta expression in human placenta and placental bed during early pregnancy. Placenta, v.23(1), p.44-8, 2002. SINGH, R. Hypertensive disorders in pregnancy. Cli Nephrol, v.2, p.47-55, 2013. SOHLBERG, S; et al. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta, v.35(3), p.202-6, 2014. SOWMYA, S; et al. Role of IL-10-819(T/C) promoter polymorphism in preeclampsia. Inflammation, v.37(4), p.1022-7, 2014. STAFF, A.C; et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension, v.61(5), p.932-942, 2013. STEEGERS, E.A; et al. Pre-eclampsia. Lancet, v.376, p.631-44, 2010. STONEK, F et al., A tumor necrosis factor-alfa promoter polimorphism and pregnancy complications: results of a prospective cohort study in 1652 pregnant women. Reproductive sciense, v.14(5), p.425-429, 2007. SYRRYS, P; et al. Transforming growth factor-B1 gene polymorphisms and coronary artery disease. Clin Sci, v.95, p.659–667, 1998. TAGA, K., TOSATO, G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol, V.148(4), p.1143-8, 1992. THAN, N.G; et al. Placental Protein 13 (PP13) - A Placental Immunoregulatory Galectin Protecting Pregnancy. Front Immunol, v.5, p.348, 2014. TILBURGS, T; et al. Evidence for a selective migration of fetus-specific CD4+CD25 bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol, v.180(8), p.5737–45, 2008. TOLDI, G; et al. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol, v.66(3), p.223–9, 2011. TURKAY, C; et al. Effect of angiotensin-converting enzyme inhibition on experimental hepatic fibrogenesis. Dig Dis Sci, v.53(3), p.789-93, 2008. TZAKAS, P; et al. Transforming growth factor beta-1 (TGFB1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel. BMC Musculoskelet Disord, v.14, p.6-29, 2005. VALENZUELA, F.J; et al. Pathogenesis of preeclampsia: The genetic component. J Pregnancy, v.2012, p.1-8, 2011. VEENSTRA van NIEUWENHOVEN, A.L; HEINEMAN, M.J; FAAS, M.M. The immunology of successful pregnancy. Hum Reprod Update, v.9, p.347–57, 2003. VENKATESHA, S; et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med, v.12(6), p.642–9, 2006. Von DADELSZEN, P; MAGEE, L.A; ROBERTS, J.M. Subclassification of preeclampsia. Hypertens Pregnancy, v.22920, p.143–148, 2003. WALKER, J.J. Pre-eclampsia. Lancet, v.356, p.1260-5, 2000. VURAL, P; et al. Tumor necrosis factor alpha, interleukin-6 and interleukin-10 polymorphisms in preeclampsia. J Obstet Gynaecol Res., v.33(1), p.64-71, 2010. ZETTERSTROM, K. Being born small for gestational age increases the risk of severe preeclampsia. BJOG, v.114(3), p.319-24, 2007. WANG, W.J; et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol, v.84(2), p.164-70, 2010. WILCZYNSKI, J.R; el at. Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol, v.109(1), p.8-15, 2003. WILCZYSKI, J.R; et al. Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and preeclampsia. Mediators Inflamm, v.11(2), p.105-11, 2002. WING, K; SAKAGUCHI, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol, v.11(1), p.7–13, 2010. WOOD, K.J; SAKAGUCHI, S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol, v.3(3), p.199–210, 2003. YANG, Y; HUANG, C.T; HUANG, X; PARDOLL, D.M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol, v.5(5), p.509-15, 2004. YANG, H; et al. Polymorphisms and haplotypes of the TGF-b1 gene are associated with risk of polycystic ovary syndrome in Chinese Han women. Eur J Obstet Gynecol Reprod Biol, v.186, p.1-7, 2015. YAN-YAN, L. Transforming growth factor beta1 +869T/C gene polymorphism and essential hypertension: a meta-analysis involving 2708 participants in the Chinese population. Intern Med, v.50(10), p.1089-92, 2011. YAYAMA, K; et al. Angiotensin II regulates liver regeneration via type 1 receptor following partial hepatectomy in mice. Biol Pharm Bull, v.31(7), p.1356-61, 2008. YOSHIJI, H; et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem, v.14(26), p.2749-54, 2007.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-05-04T04:00:15Zoai:bdtd.uftm.edu.br:tede/645Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-05-04T04:00:15Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv Polimorfismos do gene TGF-β1 na pré-eclâmpsia
title Polimorfismos do gene TGF-β1 na pré-eclâmpsia
spellingShingle Polimorfismos do gene TGF-β1 na pré-eclâmpsia
HORTOLANI, Andrezza Cristina Cancian
Pré-eclâmpsia.
Polimorfismos Genéticos.
Fator de Crescimento Transformante Beta-1
Preeclampsia.
Genetic Polymorphisms.
TGF-β1.
Genética Molecular e Microorganismos
title_short Polimorfismos do gene TGF-β1 na pré-eclâmpsia
title_full Polimorfismos do gene TGF-β1 na pré-eclâmpsia
title_fullStr Polimorfismos do gene TGF-β1 na pré-eclâmpsia
title_full_unstemmed Polimorfismos do gene TGF-β1 na pré-eclâmpsia
title_sort Polimorfismos do gene TGF-β1 na pré-eclâmpsia
author HORTOLANI, Andrezza Cristina Cancian
author_facet HORTOLANI, Andrezza Cristina Cancian
author_role author
dc.contributor.none.fl_str_mv BALARIN, Marly Aparecida Spadotto
06208176847
http://lattes.cnpq.br/9825231661876909
TANAKA, Sarah Cristina Sato Vaz
33786967881
http://lattes.cnpq.br/5778364857984906
dc.contributor.author.fl_str_mv HORTOLANI, Andrezza Cristina Cancian
dc.subject.por.fl_str_mv Pré-eclâmpsia.
Polimorfismos Genéticos.
Fator de Crescimento Transformante Beta-1
Preeclampsia.
Genetic Polymorphisms.
TGF-β1.
Genética Molecular e Microorganismos
topic Pré-eclâmpsia.
Polimorfismos Genéticos.
Fator de Crescimento Transformante Beta-1
Preeclampsia.
Genetic Polymorphisms.
TGF-β1.
Genética Molecular e Microorganismos
description A pré-eclâmpsia (PE) é uma desordem da gestação humana, caracterizada por hipertensão (pressão arterial sistólica ≥ 140mmHg e pressão arterial diastólica ≥ 90mmHg) e proteinúria (> 300mg/24horas ou ≥ 1+ de proteína detectada no exame de urina tipo I), que ocorre após a 20º semana de gravidez. É responsável por 5 a 8% das complicações que ocorrem durante a gravidez, sendo 10 a 18% em países subdesenvolvidos. Alguns estudos mostram que o fator genético é responsável por 50% dos casos de PE. O Fator de Crescimento Transformante Beta-1 (TGF-β1) pode contribuir para o surgimento dos sinais clínicos de PE pelo fato de influenciar a placentação superficial inadequada, levar a uma disfunção endotelial e auxiliar no surgimento de hipertensão e proteinúria, que são os sinais clínicos mais conhecidos dessa patologia. Por isso, este estudo tem como objetivo investigar os polimorfismos do gene TGF- β1, posições -509 (C/T) e -800 (G/A), em uma população brasileira, na região de Uberaba, Minas Gerais. Participaram desse estudo 257 mulheres, sendo 88 com PE e 169 do grupo controle. Todas as participantes assinaram o Termo de Consentimento Livre e Esclarecido (TCLE) e responderam a uma entrevista sobre dados clínicos e demográficos. Os polimorfismos do gene TGF-β1, posições C-509T e G-800A, foram investigados por PCR em tempo real. Não houve associação genotípica do polimorfismo do gene TGF-β1, posição C- 509T (2=0,312; p=0,855) e alélica (2=0,154; p=0,403) e o desenvolvimento da PE. Para o polimorfismo do gene TGF-β1, posição G-800A, não houve associação entre os genótipos (2=0,744; p=0,689) e nem para a presença do alelo polimórfico A (2=0,394; p=0,374) e o desenvolvimento da PE. Na análise de regressão logística, a recorrência familiar foi estatisticamente significativa, onde mulheres que relataram histórico familiar de PE possuem dezessete vezes mais risco de desenvolver a doença em relação a mulheres sem histórico familiar. Também foi observado que a primiparidade confere um risco de dezenove vezes de desenvolver PE em relação a mulheres que possuem mais de duas gestações. Portanto, esse estudo sugere que os polimorfismos avaliados não predispõem ao desenvolvimento da PE nessa população. Entretanto, necessita-se de mais estudos genéticos para auxiliar na compreensão do desenvolvimento da PE.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-03
2019-05-03T18:57:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv HORTOLANI, Andrezza Cristina Cancian. Polimorfismos do gene TGF-β1 na pré-eclâmpsia. 2017. 55f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
http://bdtd.uftm.edu.br/handle/tede/645
identifier_str_mv HORTOLANI, Andrezza Cristina Cancian. Polimorfismos do gene TGF-β1 na pré-eclâmpsia. 2017. 55f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
url http://bdtd.uftm.edu.br/handle/tede/645
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv ACHARYA, A; et al. Acute kidney injury in pregnancy-current status. Adv Chronic Kidney Dis, v.20(3), p.215-222, 2013. ACOSTA-RODRIGUEZ, E.V; et al. Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17–producing human T helper cells. Nature immunology, v.8, p.942-949, 2007. AGUILAR-DURAN, M; et al. Haplotype analysis of TGF-β1 gene in a preeclamptic population of northern Mexico. Pregnancy Hypertens, v.4(1), p.14-18, 2014. ALUVIHARE, V.R, KALLIKOURDIS, M, BETZ, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol, v.5(3), p.266–271, 2004 AMANI, D; et al. The promoter region (−800, −509) polymorphisms of transforming growth factor-_1 (TGF-β1) gene and recurrent spontaneous abortion. J Reprod Immunol, v.62(1-2), p.159-166, 2004. American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists task force on hypertension in pregnancy. Obstet Gynecol, v.122(5), p.1122, 2013. ANTONIPILLIAI, I; et al. Transforming growth factor-beta is a renin secretagogue at picomolar concentrations. Am J Physiol, v.265(4 Pt 2), p.537-41, 1993. AYORINDE, A.A; BHATTACHARYA, A. Inherited predisposition to preeclampsia: Analysis of the Aberdeen intergenerational cohort. Pregnancy Hipertens, v.8, p.37-41, 2017. BENYO, D.F, MILES, T.M, CONRAD, K.P. Hypoxia stimulates cytokine reproduction by villous explants from the human placenta. J Clin Endocrinol Metab, v.82(5), p.1582-1588, 1997. BERRY, C; ATTA, M.G. Hypertensive disorders in pregnancy. World J Nephrol, v.6(5), p.418-28, 2016. BILATE, A.M; LAFAILLE, J.J. Induced CD4(+)Foxp3(+) regulatory T Cells in immune tolerance. Annu Rev Immunol, v.30, p.733-758, 2012. BLOBE, G.C; SHIEMANN, W.P; LODISH, H.F. Role of transforming growth factor beta in human disease. N Engl J Med, v.342, p.1350-1358, 2000. BOMBELL, S; McGUIRE, W. Tumor necrosis factor (-308A) polymorphism in preeclampsia: meta-analysis of 16 case-control studies. Aust N Z J Obstet Gynaecol, v.48(6), p. 547-551, 2008. BORDER, W.A; NOBLE, N.A. Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension, v.31(1 Pt2), p.181, 1998. BORZYCHOWSKI, A.M; et al. Changes in systemic type 1 and type 2 immunity in normal pregnancy and preeclampsia may be mediated by natural killer cells. Eur J Immunol, v.35(10), p.3054-3063, 2005. BOWEN, J.M; et al. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta, v.23(4), p.239-56, 2002. BURTON, G.J; JAUNIAUX, E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig, v.11(6), p.342-52, 2004. BURTON, G.J; JAUNIAUX, E; WATSON, A.L. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol, v.181(3), p.718-24, 1999. BROSENS, J.J; et al. A role for menstruation in preconditioning the uterus for successful pregnancy. Am J Obstet Gynecol, v.200(6), p.615, 2009. CANNIGIA, I; et al. Regulation of trophoblast differentiation by TGF-β1 and TGF-β3 via endoglin. Placenta, v.17, p.36, 1996. CHAN, J. C; et al. The central roles obesity-associated dyslipidaemia, endothelial activation and cytokines in the Metabolic Syndrome-an analysis by structural equation modeling. Int J Obes Relat Metab Disord, v. 26, p.994-1008, 2002. CHEN, W; et al. Conversion of peripheral CD4+ CD252 naive T cells to CD4+ CD25+ regulatory T cells by TGF-b induction of transcription factor Foxp3. J Exp Med, v.198(12), p.1875-86, 2003. CLARK, A.G. The Role of Haplotypes in Candidate Gene Studies. Genet Epidemiol, v.27(4), p.321-33, 2004. CLARK, D.A; COKER, R. Transforming growth factor beta (TGF-beta). Int J Biochem Cell Biol, v.30, p.293-298, 1998. CNATTINGIUS, S; et al. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A, v.130A(4), p.365-371, 2004. CORNELIUS, D.C; et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension, v.62(6), p.1068-73, 2013. CROME, S.Q., WANG, A.Y., LEVINGS, M.K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol, v.159(2), p.109-19, 2010. CUNHA, V.M.P et al. Polimorfismos geneticos do fator de crescimento do endotélio vascular na pré-eclampsia. Revista Brasileira de Ginecologia e Obstetrícia, v.33, p.158-163, 2011. DAHER, S; et al. Cytokines in recurrent pregnancy loss. J Reprod Immunol, v.62, p.151-7, 2004. DAVIES, E.L; BELL, J.S; BHATTACHARYA, S. Preeclampsia and preterm delivery: a population-based case–control study. Hypertens Pregnancy, v.35(4), p.510-19, 2016. DEEPTHI, G; et al. TGFB1 Functional Gene Polymorphisms (C-509T and T869C) in the Maternal Susceptibility to Pre-eclampsia in South Indian Women. Scand J Immunol, v.82(4), p.390-7, 2015. DHARIWAL, N.K; LYNDE, G.C. Update in the Management of Patients with Preeclampsia. Anesthesiol Clin, v.35(1), p.95-106, 2017. DHILLION, P; et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr, v.303(4), p.353-358, 2012. DIDION, S.P.; et al. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension, v.54(3), p.619-24, 2009. DOCHERTY, N.G; et al. Transforming growth factor-beta1 (TGF-beta1): a potential recovery signal in the post-ischemic kidney. Ren Fail, v.24(4), p.391-406, 2002. DUCKITT, K; HARRINGTON, D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ, v.330(7491), p.565, 2005. FEIZOLLAHZADEH, S; et al. Promoter region polymorphisms in the transforming growth factor beta-1 (TGFβ1) gene and serum TGFβ1 concentration in preeclamptic and control Iranian women. J Reprod Immunol, v.94(2), p.216-21, 2012. FERRARA, N; DAVIS-SMYTH, T. The biology of vascular endothelial growth factor. Endocr Rev, v.18(1), p.4-25, 1997. GARCÍA-ORTIZ, L; et al. Probable association between preeclampsia/eclampsia and paternal age: a pilot study. Ginecol Obstet Mex, v.79(4), p.190-5, 2011. GATHIRAM P; MOODLEY J. Pre-eclampsia: its pathogenesis and pathophysiolgy. Cardiovasc J Afr, v.27(2), p.71-8, 2016. GENC, H; et al. Transforming growth factor β (TGF-β) levels in otherwise healthy subjects with impaired glucose tolerance. Endokrynol Pol, v.61, p.691-694, 2010. GIULIANI, E.; PARKIN, K.L.; LESSEY, B.A.; YOUNG, S.L. & FAZLEABAS, A.T. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol, v.72(3), p.262-9, 2014. GODIN, I; WYLIE, C.C. TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development, v.113, p.1451-7, 1991. GOLDENBERG, R.L; et al. Epidemiology and causes of preterm birth. Lancet, v.371, p.75- 84, 2008. GRAHAM, C.H; LALA, P.K. Mechanism of control of trophoblast invasion in situ. J Cell Physiol, v.148(2), p.228-34, 1991. GRAINGER, D.J; et al. Genetic control of the concentration of transforming growth factor type beta1. Hum Mol Genet, v.8(1), p.93-97, 1999. GRESSNER, A.M; et al. Roles of TGF-β in hepatic fibrosis. Front Biosci, v.7, p.793-807, 2002. GRIFFITHS, A.J.F. et al. Introdução à Genética. Genética de Populações.10 ed. Rio de Janeiro: Guanabara Koogan, 2013, 556-582 p. GUZOWSKI, D; et al. Analysis of single nucleotide polymorphisms in the promoter region of interleukin-10 by denaturing high performance liquid chromatography. J Biomol Tech, v.16(2), p.154-66, 2005. HAIG, D. Alteration of generations: genetic conflicts of pregnancy. Am J Reprod Immunol, v.35(3), p.226-32, 1996. HARAM, K; et al. Genetic aspects of preeclampsia and the HELLP syndrome. J Pregnancy, v.2, p.1-13, 2014. HARMON, A.C; et al. The role of inflammation in the pathology of preeclampsia. Clin Sci Lond, v.130(6), p.409–419, 2016. HARMON, Q.E; et al. Risk of fetal death with preeclampsia. Obstet Gynecol, v.125(3), p.628-635, 2015. HERNANDEZ-DIAS, S; TOH, S; CNATTINGIUS, S. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ, v.18(338), p.2255, 2009. HERNÁNDEZ-VALENCIA, M; et al. Barrier family planning methods as risk factor which predisposes to preeclampsia. Ginecol Obstet Mex, v.68, p.333–8, 2000. HSIEH, Y.Y; et al. Polymorphism for Transforming Growth Factor Beta 1-509 (TGF-B1- 509): Association with Endometriosis. Biochem Genet, v.43(5-6), p.203-210, 2005. HSU, P; NANAN, R.K.H. Innate and adaptive immune interactions at the foetal-maternal interface in healthy human pregnancy and preeclampsia. Front Immunol, v.28, p.125, 2014. HUPPERTZ, B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension, v.51(4), p.970-975, 2008. IMAMURA, T; et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature, v.389(6651), p.622-6, 1997. IRANI, R.A; et al. Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-alpha signaling. Hypertension, v.55(5), p. 1246– 53, 2010. ITO, T; et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity, v.28(6), p.870–80, 2008. JAUNIAUX, E; POSTON, L; BURTON, G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum Reprod Update, v.12(6), p.747-55, 2006. KAJDANIUK, D; et al. Vascular endothelial growth factor (VEGF) – part 1: in physiology and pathophysiology. Endokrynol Pol, v.62(5), p.444-45, 2011. KALKUNTE, S; et al. Vascular IL-10: a protective role in preeclampsia. J Reprod Immunol, v.88(2), p.165-9, 2011. KATO, Y.; INOUE, H.; YOSHIOKA, U., et al. Effects of transforming growth factor β1, interleukin-1b, tumor necrosis factor a and platelet-derived growth factor on the collagen synthesis and the proliferation of periacinal fibroblastoid cells isolated and cultured from rat pancreatic acini. Pathophysiology, v.3, p.175–179, 1999. KATSI, V; et al. Preeclampsia: What Does the Father Have to Do with It? Curr Hypertens Rep, v.17(8), p.60, 2015. KHADER, Y.S; et al. Preeclampsia in Jordan: incidence, risk factors, and its associated maternal and neonatal outcomes. J Matern Fetal Neonatal Med, v.8, p.1-7, 2017. KHAN, K.S; et al. WHO analysis of causes of maternal death: A systematic review. Lancet, v.367(9516), p.1066-74, 2006. KNIGHT, M. Eclampsia in the United Kingdom 2005. BJOG, v.114, p.1072, 2007. KRZEMIEN, S; KNAPCZYK, P. Current review on the role of transforming growth factor beta (TGF-beta) in some pathological disorders. Wiad Lek, v.58(9-10), p.536-9, 2005. LALA, P.K; CHAKRABORTY, C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta, v. 24(6), p.575–87, 2003. LARESGOITI-SERVITJE, E; GOMEZ-LOPEZ, N; OLSON, D.M. An immunological insight into the origins of pre-eclampsia. Hum Reprod Update, v.16(5), p.510-24, 2010. LEE, J.L; et al. Transforming growth factor-b1 gene polymorphisms in Korean women with endometriosis. Am J Reprod Immunol, v.66, p.428-34, 2011. LI, X; SHEN, L; TAN, H. Polymorphisms and plasma level of transforming growth factorbeta 1 and risk for pre-eclampsia: a systematic review. PLoS ONE, v.9(5), p.1-8, 2014. LOEYS, B.L; et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med, v.355(8), p.788-98, 2006. LUEDECKING, E.K; et al. Analysis of genetic polymorphisms in the transforming growth factor beta1 gene and the risk of Alzheimer’s disease. Hum Genet, v.106(5), p.565–569, 2000. LUDVIKSSON, B.R; SEEGERS, D; RESNICK, A.S. The effect of TGF-beta-1 on immune responses of naive versus memory CD4+ Th1/Th2. Eur J Immunol, v.30(7), p.2101-11, 2000. LYKKE, J.A; PAIDAS, M.J; LANGHOFF-ROOS, J. Recurring Complications in Second Pregnancy. Obstet Gynecol, v.113 (6), p.1217-1224, 2009. MAITRA, U; et al. Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol, v.182(9), p.5763-9, 2009. MAREK, A; et al. TGF-β (transforming growth factor-β) in chronic inflammatory conditions – a new diagnostic and prognostic marker? Med Sci Monit, v.8(7), p.145–151, 2002. MARSHALL GRAVES, J.A. Genomic imprinting, development and disease -- is preeclampsia caused by a maternally imprinted gene? Reprod Fertil Dev, v.10(1), p.23–9, 1998. MASSAGUÉ, J. The transforming growth factor-beta family. Annu Rev Cell Biol, v.6, p. 597–641,1990. MASSAGUÉ, J. TGF-beta signal transduction. Annu Rev Biochem, v.67, p.753-91, 1998. MASSAGUÉ, J.; WOTTON, D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J, v.19(8), p.1745-54, 2000. MATTHIESENA, L; et al. Immunology of preeclampsia. Chemich Immunol Allerg, v.89, p.49-61, 2005. MATTSSON, K; et al. Maternal Smoking during Pregnancy and Daughters’ Preeclampsia Risk. PloS ONE, v.10(12), p.1-13, 2015. MILNE, F; et al. The pre-eclampsia community guideline (PRECOG): How to screen for and detect onset of pre-eclampsia in the community. BMJ, v.330(7491), p.576-80, 2005. MINCHEVA-NILSSON, L; BARANOV, V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol, v.72(5), p.440–57, 2014. MOFFETT-KING, A. Natural killer cells and pregnancy. Nat Rev Immunol, v.2(9), p.656- 63, 2002. MOLVAREC, A; et al. Association between tumor necrosis factor (TNF)-alpha G-308A gene polymorphism and preeclampsia complicated by severe fetal growth restriction. Clin Chim Acta, v.392(1-2), p.52-7, 2008. MORENO, M; et al. Atorvastatin attenuates angiotensin II-induced inflammatory actions in the liver. Am J Physiol Gastrointest Liver Physiol, v.296(2), p.147-56, 2008. MORRIS, R.W; KAPLAN, N.L. On the Advantage of Haplotype Analysis in the Presence of Multiple Diseases Susceptibility Alleles. Genetic Epidemiology, v.23(3), p.221-33, 2002. MOUSTAKA, A; HELDIN, C.H. Non-Smad TGF-beta signals. J Cell Sci, v.118, p.3573-84, 2005. MUTTER, W.P; KARUMANCHI, S.A. Molecular Mechanisms of Preeclampsia. National Institute of Health, v.75(1), p.1-8, 2008. MÜTZE, S; RUFNIK-SHÖNEBORN, S; ZERRES, K; RATH, W. Genes and the preeclampsia syndrome. J Perinat Med, v. 36(1), p.154-158, 2007. NAKAO, A; et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, v.389(6651), p.631-5, 1997. NIU, W. Evaluation of Transforming Growth Factor Beta-1 Gene 869T/C Polymorphism with Hypertension: A Meta-Analysis. Int J Hypertens, 2011. NISSAISORAKARN, P; SHARIF, S; JIM, B. Hypertension in Pregnancy: Defining Blood Pressure Goals and the Value of Biomarkers for Preeclampsia. Curr Cardiol Rep, v.18(12), p.131, 2016. ODEGARD, R.A; et al. Preeclampsia and fetal growth. Obstet Gynecol, v.96(6), p.950-5, 2000. PAPANICOLAOU, D.A; et al. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med, v.128(2), p.127-37, 1998. PAULI, J.M; REPKE, J.T. Preeclampsia Short-term and Long-term Implications. Obstet Gynecol Clin North Am, v.42(2), p.299-313, 2015. PEGORARO, R.J; CHIKOSI, A; ROM, L; ROBERTS, C; MOODLEY, J. Methylenetetrahydrofolate reductase gene polymorphisms in black South Africans and the association with preeclampsia. Acta Obstet Gynecol Scand, v.83(5), 2004. PERAÇOLI, J.C; PARPINELLI, M.A. Síndromes Hipertensivas da gestação: identificação de casos graves. Ver Bras Ginecol Obstet, v.27, p.627-34, 2005. PERAÇOLI, M.T; et al. Platelet aggregation and TGF-beta(1) plasma levels in pregnant women with preeclampsia. J Reprod Immunol, v.79(1), p.79-84, 2008. PINHEIRO, M.B; et al. Severe preeclampsia: association of genes polymorphisms and maternal cytokines production in Brazilian population. Cytokine, v.71(2), p.232-7, 2015. PISSETTI, C.W; et al. Protective role of the G allele of the polymorphism in the Interleukin 10 gene (-1082G/A) against the development of preeclampsia. Rev Bras Ginecol Obst, v.36(10), p.456-60, 2014. POWER, L.L; et al. Immunoregulatory molecules during pregnancy and at birth. J Reprod Immunol, v.56(1-2), p.19-28, 2002. QUINN, K.H; et al. The unique pathophysiology of early-onset severe preeclampsia: role of decidual T regulatory cells. J Reprod Immunol, v.91(1-2), p.76–82, 2011. REDMAN, C.W; SARGENT, I.L. Latest advances in understanding preeclampsia. Science, v.308(5728), p.1592-4, 2005. REDMAN, C.W; SARGENT, I.L. Immunology of pre-eclampsia. Am J Reprod Immunol, v.63, p.534–543, 2010. RIZZINO, A. Transforming growth factor-p: Multiple effects on cell differentiation and extracellular matrices. Dev Biol, v.130(2), p.411-22, 1988. ROBERTS, A.B; et al. New class of transforming growth factors potentiated by epidermal growth factor: Isolation fromnon-neoplastic tissues. Proc Natl Acad Sci, v.78(9), p.5339–43, 1981. ROBERTS, A.B; SPORN, M.B. The transforming growth factor: Peptide Growth Factors and Their Receptors. New York: Springer-Verlag, p.419-472, 1990. ROBERTSON, S.A; et al. Transforming growth factor beta--a mediator of immune deviation in seminal plasma. J Reprod Immunol, v.57(1-2), p.109-28, 2002. ROJAS-SUAREZ, J; VIGIAL DE GRACIA, P. Pre-eclampsia-eclampsia admitted to critical care unit. J Matern Fetal Neonatal Med, v.25(10), p.2051-4, 2012. ROS, H.S; et al. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet, v.91(4), p.256–260, 2000. ROTH, I., FISHER, S.J. IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol, v.205(1), p.194-204, 1999. SAFTLAS, A.F; et al. Cumulative exposure to paternal seminal fluid prior to conception and subsequent risk of preeclampsia. J Reprod Immunol, v.101-102, p.104-10, 2014. SAIGAL, S; DOYLE, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, v.371(9608), p.261-9, 2008. SAITO, S. Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia. Immunol Cell Biol, v.88(6), p.615–7, 2010. SAITO, S; SAKAI, M. Th1/Th2 balance in preeclampsia. J Reprod Immunol, v.59, p.161– 73, 2003. SAKAGUCHI, S; et al. Regulatory T cells and immune tolerance. Cell, v.133(5), p.775–787, 2008. SAMBROOK, J; FRITSCH, E. F; MANIATIS, T. E. Molecular Cloninig, a laboratory manual New York Cold Spring Harbor 1989. SASAKI, Y; et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol, v.149(1), p.139–145, 2007. SASAKI, Y; et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod, v.10(5), p.347–53, 2004. SHARKEY, D; et al. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol Hum Reprod, v.13(7), p.491- 501, 2007. SKJAERVEN, R; et al. Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ, v.331(7521), p.877, 2005. SHULL, M.M; et al. The importance of transforming growth factor-beta 1 in immunological homeostasis as revealed by gene ablation in mice. In C Jacob (ed): “Overexpression and Knockout of Cytokines in Transgenic Mice.” Academic Press La, p135-159, 1994. SIBAI, B.M. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol, v.102(1), p.181-192, 2003. SIMPSON H; et al. Transforming growth factor beta expression in human placenta and placental bed during early pregnancy. Placenta, v.23(1), p.44-8, 2002. SINGH, R. Hypertensive disorders in pregnancy. Cli Nephrol, v.2, p.47-55, 2013. SOHLBERG, S; et al. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta, v.35(3), p.202-6, 2014. SOWMYA, S; et al. Role of IL-10-819(T/C) promoter polymorphism in preeclampsia. Inflammation, v.37(4), p.1022-7, 2014. STAFF, A.C; et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension, v.61(5), p.932-942, 2013. STEEGERS, E.A; et al. Pre-eclampsia. Lancet, v.376, p.631-44, 2010. STONEK, F et al., A tumor necrosis factor-alfa promoter polimorphism and pregnancy complications: results of a prospective cohort study in 1652 pregnant women. Reproductive sciense, v.14(5), p.425-429, 2007. SYRRYS, P; et al. Transforming growth factor-B1 gene polymorphisms and coronary artery disease. Clin Sci, v.95, p.659–667, 1998. TAGA, K., TOSATO, G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol, V.148(4), p.1143-8, 1992. THAN, N.G; et al. Placental Protein 13 (PP13) - A Placental Immunoregulatory Galectin Protecting Pregnancy. Front Immunol, v.5, p.348, 2014. TILBURGS, T; et al. Evidence for a selective migration of fetus-specific CD4+CD25 bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol, v.180(8), p.5737–45, 2008. TOLDI, G; et al. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol, v.66(3), p.223–9, 2011. TURKAY, C; et al. Effect of angiotensin-converting enzyme inhibition on experimental hepatic fibrogenesis. Dig Dis Sci, v.53(3), p.789-93, 2008. TZAKAS, P; et al. Transforming growth factor beta-1 (TGFB1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel. BMC Musculoskelet Disord, v.14, p.6-29, 2005. VALENZUELA, F.J; et al. Pathogenesis of preeclampsia: The genetic component. J Pregnancy, v.2012, p.1-8, 2011. VEENSTRA van NIEUWENHOVEN, A.L; HEINEMAN, M.J; FAAS, M.M. The immunology of successful pregnancy. Hum Reprod Update, v.9, p.347–57, 2003. VENKATESHA, S; et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med, v.12(6), p.642–9, 2006. Von DADELSZEN, P; MAGEE, L.A; ROBERTS, J.M. Subclassification of preeclampsia. Hypertens Pregnancy, v.22920, p.143–148, 2003. WALKER, J.J. Pre-eclampsia. Lancet, v.356, p.1260-5, 2000. VURAL, P; et al. Tumor necrosis factor alpha, interleukin-6 and interleukin-10 polymorphisms in preeclampsia. J Obstet Gynaecol Res., v.33(1), p.64-71, 2010. ZETTERSTROM, K. Being born small for gestational age increases the risk of severe preeclampsia. BJOG, v.114(3), p.319-24, 2007. WANG, W.J; et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol, v.84(2), p.164-70, 2010. WILCZYNSKI, J.R; el at. Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol, v.109(1), p.8-15, 2003. WILCZYSKI, J.R; et al. Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and preeclampsia. Mediators Inflamm, v.11(2), p.105-11, 2002. WING, K; SAKAGUCHI, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol, v.11(1), p.7–13, 2010. WOOD, K.J; SAKAGUCHI, S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol, v.3(3), p.199–210, 2003. YANG, Y; HUANG, C.T; HUANG, X; PARDOLL, D.M. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol, v.5(5), p.509-15, 2004. YANG, H; et al. Polymorphisms and haplotypes of the TGF-b1 gene are associated with risk of polycystic ovary syndrome in Chinese Han women. Eur J Obstet Gynecol Reprod Biol, v.186, p.1-7, 2015. YAN-YAN, L. Transforming growth factor beta1 +869T/C gene polymorphism and essential hypertension: a meta-analysis involving 2708 participants in the Chinese population. Intern Med, v.50(10), p.1089-92, 2011. YAYAMA, K; et al. Angiotensin II regulates liver regeneration via type 1 receptor following partial hepatectomy in mice. Biol Pharm Bull, v.31(7), p.1356-61, 2008. YOSHIJI, H; et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem, v.14(26), p.2749-54, 2007.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde
Brasil
UFTM
Programa de Pós-Graduação em Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde
Brasil
UFTM
Programa de Pós-Graduação em Ciências da Saúde
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1797221119354208256