Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_703fd510b50a1947919ef8d4fa888ad0
oai_identifier_str oai:bdtd.uftm.edu.br:tede/1054
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Efeito da suplementação com benfotiamina sobre parâmetros metabólicos e desempenho de endurance de camundongos submetidos a treinamento de nataçãoExercícios físicos.Tiamina.Estresse Oxidativo.Suplementos Nutricionais.Resistência física.Physical exercise.Thiamine.Oxidative stress.Nutritional supplementation.Endurance exercise.Metabolismo e BioenergéticaIntrodução: Exercícios físicos aumentam a demanda energética, fazendo-se necessário o adequado consumo de nutrientes a fim de aperfeiçoar a produção de energia, possibilitar a melhor recuperação e otimizar os processos adaptativos. O difosfato de tiamina (TDP) é cofator essencial para o funcionamento das enzimas complexo piruvato-desidrogenase (PDH), α- cetoglutarato desidrogenase (OGDH) e transcetolase (TKT), fundamentais no metabolismo energético. A benfotiamina é um análogo sintético da tiamina, capaz de promover uma biodisponibilidade de TDP maior em comparação a outros sais de tiamina. Objetivo: O objetivo deste estudo foi avaliar os efeitos da suplementação com benfotiamina sobre os parâmetros metabólicos e de desempenho em camundongos submetidos o treinamento físico de endurance. Métodos: A pesquisa utilizou 25 camundongos BALB/c, machos com seis semanas de idade. Os animais foram separados em 4 grupos: Dieta padrão e sedentarismo (Pad-Sed); Dieta padrão com treinamento em natação (Pad-Tr); Dieta suplementada com benfotiamina e sedentário (Ben-Sed); Dieta suplementada com benfotiamina e treinamento em natação (Ben-Tr). A benfotiamina foi adicionada à ração AIN-93 (500mg/kg). Os animais foram submetidos a treinamento de natação durante 6 semanas. O teste de exaustão foi a última sessão de natação com sobrecarga de 5% da massa corporal. A concentração plasmática de lactato foi dosada antes e imediatamente após o teste de exaustão. As concentrações de substâncias reativas ao ácido tiobarbitúrico (TBARS), proteínas carboniladas, tióis totais e tióis não-proteicos foram analisadas no fígado, coração e músculo tibial anterior. As concentrações de tiamina nos eritrócitos e no músculo gastrocnêmio foram avaliadas por cromatografia líquida de alta eficiência. A expressão do RNAm dos genes PDHa1 e OGDH no músculo gastrocnêmio foi avaliada por Transcrição reversa-reação em cadeia da polimerase em tempo real (qRT-PCR). A concentração dos ácidos pirúvico, lático e hidroxibutírico foram quantificados no músculo por cromatografia gasosa acoplada ao espectrômetro de massas (GC-MS). Resultados: Os animais suplementados apresentaram níveis mais elevados de tiamina livre, monofosfato de tiamina e difosfato de tiamina nos eritrócitos e nos músculos. No músculo tibial, a peroxidação lipídica foi maior no grupo Pad-Sed foi maior, enquanto no coração, a peroxidação lipídica nos grupos Pad-Sed e Ben-Tr foi maior do que no grupo Ben-Sed. A concentração de proteínas carboniladas no músculo foi maior no grupo Pad-Sed do que emambos os grupos suplementados. No fígado, a carbonilação de proteínas foi menor no grupo Ben-Sed do que no Pad-Sed. O nível de tióis totais foi menor no grupo Ben-Sed do que no PadTr. No coração, o nível de tióis totais foi mais alto no grupo Ben-Sed do que no Ben-Tr. A concentração de tióis não-proteicos no músculo foi maior no grupo Ben-Sed do que no Ben-Tr, enquanto no coração, a concentração de tióis não-proteicos do grupo Pad-Tr foi menor do que no grupo Pad-Sed. Não houve diferença na expressão gênica entre todos os grupos. O músculo dos animais treinados suplementados apresentou maiores concentrações de ácido lático e de ácido hidroxibutírico que animais sedentários. A razão ácido lático:ácido pirúvico foi maior nos animais treinados. Não houve diferença na capacidade de endurance entre os grupos Pad-Tr e Ben-Tr. Da mesma forma, a concentração final de lactato também não foi diferente entre os grupos. Conclusão: A suplementação oral com benfotiamina aumenta a concentração de tiamina e seus éteres nos eritrócitos e no músculo gastrocnêmio. A benfotiamina se mostrou um antioxidante eficiente contra o estresse oxidativo no músculo tibial anterior e no coração de animais submetidos ao treinamento de endurance. Entretanto, não é capaz de afetar a expressão dos genes de enzimas dependente de tiamina no músculo gastrocnêmio. A suplementação aumentou o catabolismo do piruvato no músculo dos animais treinados, mas não apresentou efeito antifadiga.Introduction: Physical exercises increase energy demand, making it necessary an adequate nutrients intake to improve energy production, aiming to promote better recovery and optimize adaptive processes. Thiamine diphosphate (TDP) is an essential cofactor for the functioning of the enzymes pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (OGDH), and transketolase (TKT), which are fundamentals in energy metabolism. Benfotiamine is a synthetic analogue of thiamine capable of promoting a greater bioavailability of TDP compared to other thiamine salts. Objective: The objective of this study was to evaluate the effects of supplementation with benfotiamine on metabolic and performance parameters in mice, physical training of endurance. Methods: Twenty-five male BALB/c mice were allocated to the following treatment groups: standard diet and sedentary activity (Sta-Sed), benfotiamine–supplemented diet and sedentary activity (Ben-Sed), standard diet and training activity (Sta-Tr) and benfotiamine–supplemented diet and training activity (Ben-Tr). Benfotiamine was added to the AIN-93 diet (500mg/Kg). The training comprised 6 weeks of endurance swimming training. The exhaustion test was the last swimming session with an overload of 5% of the body weight attached to the tail. The plasma lactate concentration was measured before and immediately after the exhaustion test. The concentration of thiobarbituric acid reactive substances (TBARS), carbonylated proteins, total thiols and non-protein thiols was analyzed in the liver, heart and tibialis anterior muscle. The thiamine concentration in erythrocytes and in gastrocnemius muscle was assessed using high performance liquid chromatography. The expression of the genes PDHa1 and OGDH in gastrocnemius muscle was evaluated by reverse transcriptase-Reaction in the polymerase chain in real time (qRT-PCR). Pyruvic, lactic and hydroxybutyric acids were quantified in muscle by gas chromatography coupled to the mass spectrometer (GC-MS). Results: Supplemented animals showed higher levels of thiamine, thiamine monophosphate and thiamine diphosphate in the erythrocytes and in the muscle. In the tibialis muscle, lipid peroxidation was higher in the Sta-Sed group was higher while in the heart, lipid peroxidation in the Sta-Sed and Ben-Tr groups was higher than in the Ben-Sed group. The carbonyl content in the muscle was higher in the Sta-Sed group than in both supplemented groups. In liver, the carbonyl content was lower in the Ben-Sed group than in the Sta-Sed. The level of total thiols was lower in the Ben-Sed group than in the Sta-Tr. In the heart, the level of total thiols washigher in the Ben-Sed group than in the Ben-Tr. The concentration of non-protein thiols in the muscle was higher in the Ben-Sed group than in the Ben-Tr, whereas in the heart, concentration of non-protein thiols of Sta-Tr group was lower than in the Sta-Sed. There was no difference in gene expression between all groups. The muscle of the Ben-Tr animals showed higher concentrations of lactic acid and hydroxybutyric acid than sedentary animals. The lactic acid: pyruvic acid ratio was higher in the trained animals. There was no difference in endurance capacity between the Pad-Tr and Ben-Tr groups. Similarly, the final lactate concentration was also no different between groups. Conclusion: Oral supplementation with benfotiamine increases the concentration of thiamine and its ethers in the erythrocytes and in the gastrocnemius muscle. It is an efficient antioxidant against oxidative stress in the anterior tibial muscle and in the heart of animals submitted to endurance training. However, it is not able to affect the expression of thiamine-dependent enzyme genes in gastrocnemius muscle. The supplementation increased the pyruvate catabolism in muscle of trained mice, but did not affect endurance performance.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdePORTARI, Guilherme Vannucchi26157082879http://lattes.cnpq.br/6076945534196087GONÇALVES, Alisson de Carvalho2021-11-25T16:00:52Z2021-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfGONÇALVES, Alisson de Carvalho. Efeito da suplementação com benfotiamina sobre parâmetros metabólicos e desempenho de endurance de camundongos submetidos a treinamento de natação. 2021. 123f. Tese (Doutorado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2021.http://bdtd.uftm.edu.br/handle/tede/1054porACÍN-PÉREZ, Rebeca et al. Respiratory active mitochondrial supercomplexes. Molecular cell, v. 32, n. 4, p. 529-539, 2008. AKRAM, Muhammad. Citric acid cycle and role of its intermediates in metabolism. Cell biochemistry and biophysics, v. 68, n. 3, p. 475-478, 2014. BAHR, ROALD et al. Effect of duration of exercise on excess postexercise O2 consumption. Journal of Applied Physiology, v. 62, n. 2, p. 485-490, 1987. BALAKUMAR, P. et al. The multifaceted therapeutic potential of benfotiamine. Pharmacological Research, v. 61, n. 6, p. 482-488, 2010. BAUTISTA-HERNANDEZ, V. M et al. Effect of thiamine pyrophosphate on levels of serum lactate, maximum oxygen consumption and heart rate in athletes performing aerobic activity. The Journal of International Medical Research v. 36, p. 1220–1226, 2008. BAUTISTA-HERNANDEZ, V. M.; et al Effects of thiamine pyrophosphate on blood lactate levels in young, sedentary adults undergoing moderate physical activity. The Journal of International Medical Research. v. 8, n. 2, p. 24-29, 2005. BENDER, David A. Nutritional biochemistry of the vitamins. Cambridge university press, 2003. BLASS, J. P; GIBSON, G. E. Abnormality of thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. The New England Journal of Medicine, v. 297, n. 25, p. 1367-1370, 1977. BLOMSTRAND, Eva et al. Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle. Pflügers Archiv-European Journal of Physiology, v. 462, n. 2, p. 257-265, 2011. BUBBER, P. et al. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochemistry International, v. 45, p. 1021–1028, 2004. BUEGE, John A.; AUST, Steven D. [30] Microsomal lipid peroxidation. In: Methods in enzymology. Academic Press, 1978. p. 302-310. BURKE, L. M. et al. Carbohydrates for training and competition. Journal of sports sciences, v. 29, n. sup1, p. S17-S27, 2011. BUSTIN, S. A. Absolute quantification of mRNA using real time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, v. 25, p 169- 193, 2000. BUTTERWORTH, R. F.; BESNARD, A. M. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer's disease. Metabolic Brain Disease, v. 5, n. 4, 1990. BUTTERWORTH, R. F.; GIGUIRE, J. F.; BESNARD, A. M. Activities of thiaminedependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. α-ketoglutarate dehydrogenase. Neurochernical Research, v. 11, n. 4, p. 567-577, 1986. CAMPBELL, S. C.; WISNIEWSKI, P. J. Nutritional recommendations for athletes. In: Nutrition in the Prevention and Treatment of Disease. Academic Press, 2017. p. 255-271. CARPENTER, K. J. Beriberi, white rice and vitamin B: a disease, a cause and a cure. University of California press, Berkeley, CA, 2000. CHEN, W-C. et al. Whey protein improves exercise performance and biochemical profiles in trained mice. Medicine & Science in Sports & Exercise, v. 46, n. 8, p 1517–1524, 2014. CHOI, S. K.; BAEK, S. H.; CHOI, S. W. The effects of endurance training and thiamine supplementation on anti-fatigue during exercise. Journal of Exercise Nutrition Biochemistry, v. 17, n. 4, p. 189-198, 2013. CHOMCZYNSKI, Pr; SACCHI, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol.chloroform extraction. Analytical biochemistry, v. 162, n. 1, p. 156-159, 1987. COPELAND, L.; TURNER, J. F. The regulation of glycolysis and the pentose phosphate pathway. In: Biochemistry of Metabolism. Academic Press, 1987. p. 107- 128. DAVIES, K. J. A.; PACKER, L.; BROOKS, G. A. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Archives of biochemistry and biophysics, v. 209, n. 2, p. 539-554, 1981. DOYLE, M. R.; WEBSTER, J. M.; ERDMANN, L, D. Allithiamine ingestion does not enhance isokineti parameters of muscle performance. International Journal of Sport Nutrition, v. 7, p. 39-47, 1997. EGAN, B.; ZIERATH, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism, v. 17, n. 2, p. 162-184, 2013. EUROPEAN FOOD SAFETY AUTHORITY (EFSA). Benfotiamine, thiamine monophosphate chloride and thiamine pyrophosphate chloride, as sources of vitamin B1 added for nutritional purposes to food supplements‐Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food (ANS). EFSA Journal, v. 6, n. 11, p. 864, 2008. FAUDE, O.; KINDERMANN, W.; MEYER, T. Lactate threshold concepts. Sports medicine, v. 39, n. 6, p. 469-490, 2009. FERNIE, Alisdair R.; CARRARI, Fernando; SWEETLOVE, Lee J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current opinion in plant biology, v. 7, n. 3, p. 254-261, 2004. FOGELHOLM, G.M. et al. Dietary and biochemical indices of nutritional status in male athletes and controls. Journal of American College Nutrition, v. 11, p. 181-191, 1992. FOGELHOLM, M. Micronutrient status in females during a 24-week ftness-type exercise program. Annals of Nutrition and Metabolism, v. 36, p. 209-218, 1992. FOGELHOLM, M., S. et al. Dietary intake and thiamin, iron, and zinc status in elite Nordic skiers during different training periods. International Journal of Sport Nutrition, v. 2, p. 351-365, 1992. GIBSON, G. E. et al. The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochemistry international, v. 36, n. 2, p. 97-112, 2000. GIBSON, G. E. et al. The α-ketoglutarate-dehydrogenase complex. Molecular neurobiology, v. 31, n. 1-3, p. 43-63, 2005. GOBATTO, C. A. et al. Maximal lactate steady state for aerobic evaluation of swimming mice. Comparative Exercise Physiology. v. 6, 3; p. 99–103, 2009. GONÇALVES, Á. C. et al. Benfotiamine reduces oxidative damage in muscle of endurance-trained mouse. Acta Scientiarum. Health Sciences, v. 41, p. e46888- e46888, 2019. GONÇALVES, Á. C. et al. Exercício aeróbio exaustivo aumenta o estresse oxidativo em corredores fundistas treinados. RBPFEX-Revista Brasileira De Prescrição E Fisiologia Do Exercício, v. 13, n. 83, p. 493-500, 2019. HALL, J. E.; GUYTON, A. C. Tratado de Fisiologia Médica: 12 ed. Rio de Janeiro: Elsevier, 2011. HANNINEN, S. A. et al. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. Journal of the American College of Cardiology, v.47, n. 2, 2006. HAVEMANN, L. et al. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. Journal of Applied Physiology, v. 100, n. 1, p. 194- 202, 2006. HORWITT, M.K.; KREISLER, O. The determination of early thiamine-deficient states by estimation of blood lactic and pyruvic acids after glucose administration and exercise. Journal of Nutrition. v. 37, n. 4. p. 411-427. 1949. HUR, H. et al. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PloS one, v. 9, n. 6, p. e98581, 2014. IMPELLIZZERI, F. M. et al. Physiological correlates to off-road cycling performance. Journal of sports sciences, v. 23, n. 1, p. 41-47, 2005. JACOBS, R. A. et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of applied physiology, v. 115, n. 6, p. 785-793, 2013. JIMÉNEZ-JIMÉNEZ, F. J. et al. Cerebrospinal fluid levels of thiamine in patients with Parkinson's disease. Neuroscience Letters, v. 271, p. 33-36, 1999. KARUPPAGOUNDER, S. S. et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiology of Aging, v. 30, p.1587–1600, 2009. KIM, Y. N.; CHOI, J. Y.; CHO, Y. O. Regular moderate exercise training can alter the urinary excretion of thiamin and riboflavin. Nutrition research and practice, v. 9, n. 1, p. 43-48, 2015. KNIAZUK, M.; MOLITOR, H. The influence of thiamin-deficiency on work performance in rats. Journal of Pharmacology and experimental therapeutics, v. 80, n. 4, p. 362-372, 1944. KOMPARE, M.; RIZZO, W. B. Mitochondrial fatty-acid oxidation disorders. In: Seminars in pediatric neurology. WB Saunders, 2008. p. 140-149. KWOK, J. et al. Thiamine status of elderly patients with cardiac failure. Age and Ageing, v. 21, p. 67-71, 1992. LEBLANC, P. J. et al. Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle. The Journal of physiology, v. 557, n. 2, p. 559-570, 2004. LIU, Xiaowen et al. The effects of thiamine on breast cancer cells. Molecules, v. 23, n. 6, p. 1464, 2018. LONSDALE, D. A review of the biochemistry, metabolism and clinical benefits of thiamin (e) and its derivatives. Evidence-based complementary and alternative medicine, v. 3, n. 1, p. 49–59, 2006. LUKASKI, H. C. Vitamin and mineral status: effects on physical performance. Nutrition, v. 20. n. 7-8, p. 632-644. 2004. LUNDBY, C.; JACOBS, R. A. Adaptations of skeletal muscle mitochondria to exercise training. Experimental physiology, v. 101, n. 1, p. 17-22, 2016. MANZETTI, S.; ZHANG, J.; VAN DER SPOEL, D. Thiamine function, metabolism, uptake and transport. Biochemistry, v. 53, p. 821−835, 2014. MASTERS, C. J.; REID, S.; DON, M. Glycolysis—new concepts in an old pathway. Molecular and Cellular Biochemistry, v. 76, n. 1, p. 3-14, 1987. McARDLE, W. D.; KATCH, F. I; KATCH, V. L. Exercise Physiology: Nutrition, Energy, and Human Performance. Lippincott Williams & Wilkins, 2010 - 1038 p. MEHDI, K. J. R. et al. Effect of supplementary consumption vitamin B1 (thiamine) on blood glucose changes during and after maximal aerobic exercise. International Journal of Biosciences, v. 3, n. 7, p. 195-201, 2013. MEKRUNGRUANGWONG, T. et al. The serum protein carbonyl content level in relation to exercise stress test. International Journal of Health & Allied Sciences, [S.l.], v.1, n.3, p.200, 2012. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger-7. Artmed Editora, 2018. NOZAKY, S. et al. Thiamine tetrahydrofurfuryl disulfide improves energy metabolism and physical performance during physical-fatigue loading in rats. Nutrition Research, v. 29, p. 867–872, 2009. PÁCAL, L.; KURICOVÁ, K.; KAŇKOVÁ, K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco-and lipotoxicity by rational supplementation? World journal of diabetes, v. 5, n.3, p. 288, 2014. PADOVANI, R. M. et al. Dietary reference intakes: aplicabilidade das tabelas em estudos nutricionais. Revista de Nutrição, Campinas, v. 19, n. 6, p. 741-760, 2006. PATEL, M. S. et al. The pyruvate dehydrogenase complexes: structure-based function and regulation. Journal of Biological Chemistry, v. 289, n. 24, p. 16615-16623, 2014. PATEL, M. S.; KOROTCHKINA, L. G. Regulation of the pyruvate dehydrogenase complex. Biochemical Society Transactions, v. 34, p. 217-222, 2006. PEKOVICH, S. R.; MARTIN, P. R.; SINGLETON, C. K. Thiamine deficiency decreases steady-state transketolase and pyruvate dehydrogenase but not α-ketoglutarate dehydrogenase mRNA levels in three human cell types. The Journal of nutrition, v. 128, n. 4, p. 683-687, 1998. PIETROCOLA, F. et al. Acetyl coenzyme A: a central metabolite and second messenger. Cell metabolism, v. 21, n. 6, p. 805-821, 2015. PORTARI, G. V. et al. Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication. Life Sciences, v. 162, p. 21-24, 2016. PORTARI, G. V.; VANNUCCHI. H.; JORDÃO, A. A. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: A comparison of thiamine and benfotiamine administration. European Journal of Pharmaceutical Sciences, v. 48, p. 799–802, 2013. POWERS, Scott K.; JACKSON, Malcolm J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews, v. 88, n. 4, p. 1243-1276, 2008. RODRIGUEZ, N. R. et al. Position of the American dietetic association, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. Journal of the American Dietetic Association, v. 109, n. 3, p. 509-527, 2009. ROMIJN, J. A. et al. Substrate metabolism during different exercise intensities in endurance-trained women. Journal of Applied Physiology, v. 88, n. 5, p. 1707- 1714. 2000. SCALZO, R. L. et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. The FASEB Journal, v. 28, n. 6, p. 2705-2714, 2014. SCHULZ, Horst. Beta oxidation of fatty acids. Biochimica et Biophysica Acta (BBA)- Lipids and Lipid Metabolism, v. 1081, n. 2, p. 109-120, 1991. SEDLAK, Jozef; LINDSAY, Raymond H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry, v. 25, p. 192-205, 1968. SHIBATA, K.; FUKUWATARI, T. The body vitamin B1 levels of rats fed a diet containing the minimum requirement of vitamin B1 is reduced by exercise. Journal of nutrition science and vitaminology, v. 59, p. 87-92, 2013. SHIMIZU, T. et al. Anti-fatigue effect of dicethiamine hydrochloride is likely associated with excellent absorbability and high transformability in tissues as a vitamin B 1. European journal of pharmacology, v. 635, n. 1, p. 117-123, 2010. SINGLETON, C. K; MARTIN, P. R. Molecular Mechanisms of Thiamine Utilization. Current Molecular Medicine, v. 1, p. 197-207, 2001. SIU, P. M. et al. Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles. Journal of Applied Physiology, v. 94, n. 2, p. 555-560, 2003. SUZUKI, M.; ITOKAWA, Y. Effects of thiamine supplementation on exercise-induced fatigue. Metabolic Brain Disease, v, 11, n, 1, p. 93-106, 1996. TANAKA, K. et al. Relationships of anaerobic threshold and onset of blood lactate accumulation with endurance performance. European journal of applied physiology and occupational physiology, v. 52, n. 1, p. 51-56, 1983. TANAKA, T. et al. Thiamine prevents obesity and obesity-associated metabolic disorders in OLETF rats. Journal of nutritional science and vitaminology, v. 56, n. 6, p. 335-346, 2010. TERBLANCHE, S. E. et al. The effects of endurance training and exhaustive exercise on mitochondrial enzymes in tissues of the rat (Rattus norvegicus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, v. 128, n. 4, p. 889-896, 2001. TURRENS, Julio F. Superoxide production by the mitochondrial respiratory chain. Bioscience reports, v. 17, n. 1, p. 3-8, 1997. VAZ, M., et al. Micronutrient supplementation improves physical performance measures in Asian Indian school-age children. The Journal of nutrition, v. 141, n. 11, p. 2017-2023, 2011. WEBSTER, J. M. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. European Journal of Applied Physiology, v. 77, p. 486-491, 1998. WEBSTER, J. M., et al. The effect of a thiamin derivative on exercise performance. European Journal of Applied Physiology, v. 75, p. 520-524, 1997. WELLS, Greg D.; SELVADURAI, Hiran; TEIN, Ingrid. Bioenergetic provision of energy for muscular activity. Paediatric respiratory reviews, v. 10, n. 3, p. 83-90, 2009. WILLIAMS, C.; DEVLIN, J. T. Foods, nutrition and sports performance. Londres: E & FN SPON, 1994. WOOD, T. Physiological functions of the pentose phosphate pathway. Cell biochemistry and function, v. 4, n. 4, p. 241-247, 1986. XIE, F. et al. Pharmacokinetic study of benfotiamine and the bioavailability assessment compared to thiamine hydrochloride. The Journal of Clinical Pharmacology, v. 54, n. 6, p. 688-695, 2014. YILMAZ, I. et al. The effects of thiamine and thiamine pyrophosphate on alcohol induced hepatic damage biomarkers in rats. European Review for Medical and Pharmacology Science, v. 19, n. 4, p. 664-70, 2015. ZEMPLENI, J. et al. Handbook of vitamins. CRC Press, 2013.120 ZHAO, Yanling et al. Decreased transketolase activity contributes to impaired hippocampal neurogenesis induced by thiamine deficiency. Journal of neurochemistry, v. 111, n. 2, p. 537-546, 2009. ZUBARAN, C; FERANDES, J. G; RODNIGHT, R. Wernicke-Korsakoff syndrome. Postgraduate Medicine Journal, v. 73, p. 27-31, 1997.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2021-11-26T04:00:10Zoai:bdtd.uftm.edu.br:tede/1054Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:50.139191Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186164569014272