Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance

Detalhes bibliográficos
Autor(a) principal: GONÇALVES, Álisson de Carvalho
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/367
Resumo: Os altos níveis de espécies reativas de oxigênio podem desencadear um desequilíbrio no estado redox capaz de gerar danos oxidativos a macromoléculas. O presente estudo objetivou investigar a influência da suplementação oral com benfotiamina sobre o estresse oxidativo e a atividade antioxidante no músculo de camundongos treinados. Vinte e cinco ratos Balb / c machos foram alocados nos grupos Pad-Sed: dieta padrão e sedentário (n=6); Ben-Sed: suplementação com benfotiamina e sedentário (n=6); Sta-Tr: dieta padrão e treinado (n=6); Ben-Tr: Suplementação com benfotiamina e treinado (n=7). Os camundongos treinados foram submetidos a treinamento de endurance em natação durante 6 semanas, com um teste de exaustão ao final do protocolo de treinamento. A concentração de malondialdeído livre (MDA), proteínas ligadas a malondialdeído (PrMDA) e tióis não proteicos bem como a atividade das enzimas catalase (CAT) e superóxido dismutase (SOD) foram analisadas no músculo gastrocnêmio. Não houve diferença no tempo de resistência à exaustão e na concentração de lactato pós-exaustão. A concentração de MDA foi menor no grupo Ben-Tr em relação aos grupos sedentários. A concentração de PrMDA foi maior no grupo Pad-Sed em relação aos demais grupos. Os nívéis de tióis foram maiores no grupo Ben-Sed em relação aos grupos não suplementados. A atividade da CAT foi mais acentuada em ambos os grupos suplementados. A SOD mostrou-se mais eficiente no grupo Ben-Tr que nos grupos não suplementados. Os resultados mostraram que a suplementação de benfotiamina é uma estratégia antioxidante eficiente, capaz de prevenir os danos oxidativos musculares em indivíduos engajados em programas de treinamento em endurance. Em conclusão, a benfotiamina é eficiente em prevenir danos oxidativos musculares e não interfere no desempenho de endurance.
id UFTM_c28f9b2cb215972ca1a30582385dd9eb
oai_identifier_str oai:bdtd.uftm.edu.br:tede/367
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de enduranceTiamina.Estresse Oxidativo.Esforço FísicoOxidative stress.Physical effort.Thiamine.Metabolismo e BioenergéticaOs altos níveis de espécies reativas de oxigênio podem desencadear um desequilíbrio no estado redox capaz de gerar danos oxidativos a macromoléculas. O presente estudo objetivou investigar a influência da suplementação oral com benfotiamina sobre o estresse oxidativo e a atividade antioxidante no músculo de camundongos treinados. Vinte e cinco ratos Balb / c machos foram alocados nos grupos Pad-Sed: dieta padrão e sedentário (n=6); Ben-Sed: suplementação com benfotiamina e sedentário (n=6); Sta-Tr: dieta padrão e treinado (n=6); Ben-Tr: Suplementação com benfotiamina e treinado (n=7). Os camundongos treinados foram submetidos a treinamento de endurance em natação durante 6 semanas, com um teste de exaustão ao final do protocolo de treinamento. A concentração de malondialdeído livre (MDA), proteínas ligadas a malondialdeído (PrMDA) e tióis não proteicos bem como a atividade das enzimas catalase (CAT) e superóxido dismutase (SOD) foram analisadas no músculo gastrocnêmio. Não houve diferença no tempo de resistência à exaustão e na concentração de lactato pós-exaustão. A concentração de MDA foi menor no grupo Ben-Tr em relação aos grupos sedentários. A concentração de PrMDA foi maior no grupo Pad-Sed em relação aos demais grupos. Os nívéis de tióis foram maiores no grupo Ben-Sed em relação aos grupos não suplementados. A atividade da CAT foi mais acentuada em ambos os grupos suplementados. A SOD mostrou-se mais eficiente no grupo Ben-Tr que nos grupos não suplementados. Os resultados mostraram que a suplementação de benfotiamina é uma estratégia antioxidante eficiente, capaz de prevenir os danos oxidativos musculares em indivíduos engajados em programas de treinamento em endurance. Em conclusão, a benfotiamina é eficiente em prevenir danos oxidativos musculares e não interfere no desempenho de endurance.The high levels of reactive oxygen species can trigger an imbalance in redox status, which generate oxidative damage in macromolecules. The present study aimed investigate the influence of oral supplementation with benfotiamine on oxidative stress and antioxidant activity in muscle of trained mice. Twenty-five male Balb/c mice was placed in groups: Pad-Sed) standard chow and sedentary (n=6); Ben-Sed: benfotiamine supplemented and sedentary (n=6); Pad-Tr: standard chow and trained (n=6); and Ben-Tr: benfotiamine supplemented and trained (n=7). Supplemented animals received chow AIN-93G with benfotiamine. Trained mice was submitted to 6-weeks endurance swimming training, with an exhaustion test at the end. The concentration of free malondialdehyde (MDA), proteins bound to malondialdehyde (PrMDA) and non-protein thiols as well as the activity of catalase (CAT) and superoxide dismutase (SOD) were analyzed in the gastrocnemius muscle. There was no difference in the time of exhaustion resistance and the post-exhaustion lactate concentration. The concentration of MDA was lower in the Ben-Tr group than in the sedentary groups. The concentration of PrMDA was higher in the Pad-Sed group than in the other groups. Thiol levels were higher in the Ben-Sed group than in the non-supplemented groups. CAT activity was more pronounced in both supplemented groups. SOD was more efficient in the Ben-Tr group than in the non-supplemented groups. The results showed that benfotiamine supplementation is an efficient antioxidant strategy capable of preventing muscle oxidative damage in individuals engaged in endurance training programs. In conclusion, benfotiamine is effective in preventing muscle oxidative damage and does not interfere in endurance performance.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de Graduação em Educação FísicaBrasilUFTMPrograma de Pós-Graduação em Educação FísicaPORTARI, Guilherme Vannucchi26157082879http://lattes.cnpq.br/6076945534196087GONÇALVES, Álisson de Carvalho2017-04-01T13:49:14Z2017-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfGONÇALVES, Álisson de Carvalho. Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance. 2017. 54f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.http://bdtd.uftm.edu.br/handle/tede/367porANDERSON, E. J.; KATUNGA, L. A.; WILLIS, M. S. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clinical and Experimental Pharmacology and Physiology, v. 39, n. 2, p. 179-193, 2012. ANDRADE, F. H. et al. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. The Journal of physiology, v. 509, n. 2, p. 565-575, 1998. ANDRADE, F. H.; REID, M. B.; WESTERBLAD, H. Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redoxmodulation. The FASEB Journal, v. 15, n. 2, p. 309-311, 2001. ASLANI, B. A.; GHOBADI, S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life sciences, v. 146, p. 163-173, 2016. BANDYOPADHYAY, U; DAS, D; BANERJEE, R. K. Reactive oxygen species: oxidative damage and pathogenesis. CURRENT SCIENCE-BANGALORE-, v. 77, p. 658-666, 1999. BEJMA, J; JI, L. L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. Journal of Applied Physiology, v. 87, n. 1, p. 465-470, 1999. BIRBEN, E. et al. Oxidative stress and antioxidant defense. World Allergy Organization Journal, v. 5, n. 1, p. 1, 2012. BLASS, J. P; GIBSON, G. E. Abnormality of thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. The New England Journal of Medicine, v. 297, n. 25, p. 1367-1370, 1977. BOLAÑOS, J. P. et al. Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica et Biophysica Acta (BBA)-Bioenergetics, v. 1777, n. 7, p. 789-793, 2008. BOZIC, I. et al. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells. Frontiers in cellular neuroscience, v. 9, 2015. BROWN, N. M. et al. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, v. 101, n. 15, p. 5518-5523, 2004. BUBBER, P. et al. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochemistry International, v. 45, p. 1021–1028, 2004.45 BUTTERWORTH, R. F.; BESNARD, A. M. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer's disease. Metabolic Brain Disease, v. 5, n. 4, 1990. BUTTERWORTH, R. F.; GIGUIRE, J. F.; BESNARD, A. M. Activities of thiaminedependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. α- ketoglutarate dehydrogenase. Neurochernical Research, v. 11, n. 4, p. 567-577, 1986. CAROCHO, M.; FERREIRA, I. C. F. R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, v. 51, p. 15-25, 2013. CARPENTER, K. J. Beriberi, white rice and vitamin B: a disease, a cause and a cure. University of California press, Berkeley, CA, 2000. CAZZOLA, R. et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. European Journal of Clinical Investigation, v. 33, 924-930, 2003. CHEN, W-C. et al. Whey protein improves exercise performance and biochemical profiles in trained mice. Medicine & Science in Sports & Exercise, v. 46, n. 8, p 1517–1524, 2014 COBLEY, J. N. et al. N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab, v. 21, n. 6, p. 451-61, 2011. COOPER, C. E. et al. Exercise, free radicals and oxidative stress. Biochemical Society Transitions, v. 30, p. 280-285, 2002. CROSS, C. E. et al. Oxygen radicals and human disease. Annals of internal medicine, v. 107, n. 4, p. 526-545, 1987. DHOUIB, I. E. et al. A minireview on N-acetylcysteine: An old drug with new approaches. Life sciences, v. 151, p. 359-363, 2016. DOYLE, M. R.; WEBSTER, J. M.; ERDMANN, L, D. Allithiamine ingestion does not enhance isokineti parameters of muscle performance. International Journal of Sport Nutrition, v. 7, p. 39-47, 1997. DRAHOTA, Z. et al. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. Journal of bioenergetics and biomembranes, v. 34, n. 2, p. 105-113, 2002. DRANE, P. et al. Reciprocal down-regulation of p53 and SOD2 gene expression–implication in p53 mediated apoptosis. Oncogene, v. 20, n. 4, 2001.46 ENGLAND, K.; COTTER, T. G. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Report, 2013. FINAUD, J.; LAC, G.; FILAIRE, E. Oxidative stress: relationship with exercise and training. Sports medicine, v. 36, n. 4, p. 327-358, 2006. FRANK, T. et al. High thiamine diphosphate concentrations in erythrocytes can be achieved in dialysis patients by oral administration of benfotiamine. European journal of clinical pharmacology, v. 56, n. 3, p. 251-257, 2000. FRIDOVICH, I. Superoxide radical and superoxide dismutases. Annual review of biochemistry, v. 64, n. 1, p. 97-112, 1995. GIODA, C. R. et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. American Journal of Physiology-Heart and Circulatory Physiology, v. 298, n. 6, p. 2039-2045, 2010. GOMEZ-CABRERA, M. C. et al. Oral administration of vitamin C decreases muscle mithocondrial biogenesis and hampers training-induced adaptations on endurance performance. American Journal of Clinical Nutrition, v. 87, p. 142-149, 2008 GRINTZALIS, K. et al. Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides. Free Radical Biology and Medicine, v. 59, p. 27-35, 2013. HADWAN, M. H. New Method for Assessment of Serum Catalase Activity. Indian Journal of Science and Technology, v. 9, n. 4, 2016. HALLIWELL, B.; GUTTERIDGE, J. M. C. Free radicals in biology and medicine. Oxford University Press, USA, 2015. HAMMES, H-P. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature medicine, v. 9, n. 3, p. 294-299, 2003. HANNINEN, S. A. et al. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. Journal of the American College of Cardiology, v.47, n. 2, 2006. HIGUCHI, M. et al. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. Journal of gerontology, v. 40, n. 3, p. 281-286, 1985. HORWITT, M. K.; KREISLER, O. The determination of early thiamine-deficient states by estimation of blood lactic and pyruvic acids after glucose administration and exercise. Journal of Nutrition, v. 37, n. 4, p. 411-427, 1949.47 HUANG, C. C. et al. Triterpenoid-rich extract from Antrodia camphorata improves physical fatigue and exercise performance in mice. Evidence-Based Complementary and Alternative Medicine, v. 2012, 2012. JACKSON, M. J. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radical Biology and Medicine, v. 44, n. 2, p. 132-141, 2008. JACKSON, M. J. Strategies for reducing oxidative damage in ageing skeletal muscle. Advanced drug delivery reviews, v. 61, n. 14, p. 1363-1368, 2009. JENDZJOWSKY, N. G.; DELOREY, D. S. Acute superoxide scavenging reduces sympathetic vasoconstrictor responsiveness in short-term exercise-trained rats. Journal of Applied Physiology, v. 114, n. 11, p. 1511-1518, 2013. JI, L. L. Exercise‐induced modulation of antioxidant defense. Annals of the New York Academy of Sciences, v. 959, n. 1, p. 82-92, 2002. JIMÉNEZ-JIMÉNEZ, F. J. et al. Cerebrospinal fluid levels of thiamine in patients with Parkinson's disease. Neuroscience Letters, v. 271, p. 33-36, 1999. JONES, D. P. Redefining oxidative stress. Antioxidants & redox signaling, v. 8, n. 9-10, p. 1865-1879, 2006. JUNH, M. S. Popular Sports Supplements and Ergogenic Aids. Sports Medicine, v. 33, n. 12, p. 921-939, 2003. KARACHALIAS, N. et al. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia, v. 53, n. 7, p. 1506-1516, 2010. KARUPPAGOUNDER, S. S. et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiology of Aging, v. 30, p.1587–1600, 2009. KHAWLI, F. A.; REID, M. B. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. Journal of Applied Physiology, v. 77, n. 1, p. KIRKMAN, H. N.; GALIANO, S.; GAETANI, G. F. The function of catalase-bound NADPH. Journal of Biological Chemistry, v. 262, n. 2, p. 660-666, 1987. KUWAHARA, H. et al. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radical Biology and Medicine, v. 48, n. 9, p. 1252-1262, 2010. KWOK, J. et al. Thiamine status of elderly patients with cardiac failure. Age and Ageing, v. 21, p. 67-71, 1992.48 LEEUWENBURGH, CHRISTIAAN et al. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. American Journal of PhysiologyRegulatory, Integrative and Comparative Physiology, v. 272, n. 1, p. R363-R369, 1997. LONSDALE, D. A review of the biochemistry, metabolism and clinical benefits of thiamin (e) and its derivatives. Evidence-based complementary and alternative medicine, v. 3, n. 1, p. 49–59, 2006. LU, Shelly C. Regulation of glutathione synthesis. Current topics in cellular regulation, v. 36, p. 95-116, 2001. LUKASKI, H. C. Vitamin and mineral status: effects on physical performance. Nutrition, v. 20. n. 7-8, p. 632-644. 2004. LUKIENKO, P. I. et al. Antioxidant properties of thiamine. Bulletin of experimental biology and medicine, v. 130, n. 3, p. 874-876, 2000. MARÍ, M. et al. Mitochondrial glutathione, a key survival antioxidant. Antioxidants & redox signaling, v. 11, n. 11, p. 2685-2700, 2009. MARKLUND, S; MARKLUND, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European Journal of Biochemestry, v. 47, p. 469-474, 1974. MAY, J. M.; HARRISON, F. E. Role of vitamin C in the function of the vascular endothelium. Antioxidants & redox signaling, v. 19, n. 17, p. 2068-2083, 2013. McARDLE, W. D.; KATCH, F. I; KATCH, V. L. Exercise Physiology: Nutrition, Energy, and Human Performance. Lippincott Williams & Wilkins, 2010 - 1038 p MCLURE, K.G.; TAKAGI, M.; KASTAN, M. B. NAD+ modulates p53 DNA binding specificity and function. Molecular and cellular biology, v. 24, n. 22, p. 9958-9967, 2004. MIYAZAKI, H. et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European journal of applied physiology, v. 84, n. 1-2, p. 1- 6, 2001. NICHOLLS, P. Classical catalase: ancient and modern. Archives of biochemistry and biophysics, v. 525, n. 2, p. 95-101, 2012. PÁCAL, L.; KURICOVÁ, K.; KAŇKOVÁ, K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco-and lipotoxicity by rational supplementation? World journal of diabetes, v. 5, n.3, p. 288, 2014. PADOVANI, R. M. et al. Dietary reference intakes: aplicabilidade das tabelas em estudos nutricionais. Revista de Nutrição, Campinas, v. 19, n. 6, p. 741-760, 2006.49 POLOTOW, T. G. et al. Astaxanthin supplementation delays physical exhaustion and prevents redox imbalances in plasma and soleus muscles of Wistar rats. Nutrients, v. 6, n. 12, p. 5819-5838, 2014. PORTARI, G. V. et al. Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication. Life Sciences, v. 162, p. 21-24, 2016. PORTARI, G. V.; VANNUCCHI. H.; JORDÃO, A. A. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: A comparison of thiamine and benfotiamine administration. European Journal of Pharmaceutical Sciences, v. 48, p. 799–802, 2013. POWERS, S.; NELSON, W. B.; LARSON-MEYER, E. Antioxidant and vitamin D supplements for athletes: sense or nonsense? Journal of Sports Sciences, v. 29, n. sup1, p. S47-S55, 2011. REID, M. B. et al. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. Journal of Applied Physiology, v. 73, n. 5, p. 1805-1809, 1992. REZNICK, A. Z.; PACKER, L.. Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods in enzymology, v. 233, p. 357-363, 1994. RODRIGUEZ, D. A. et al. Muscle and blood redox status after exercise training in severe COPD patients. Free Radical Biology and Medicine, v. 52, n. 1, p. 88-94, 2012. RODRIGUEZ, N. R. et al. Position of the American dietetic association, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. Journal of the American Dietetic Association, v. 109, n. 3, p. 509-527, 2009. ROMIJN, J. A. et al. Substrate metabolism during different exercise intensities in endurancetrained women. Journal of Applied Physiology, v. 88, n. 5, p. 1707- 1714. 2000. SAMJOO, I. A. et al. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutrition & diabetes, v. 3, n. 9, p. e88, 2013. SCHMID, U. et al. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes/metabolism research and reviews, v. 24, n. 5, p. 371- 377, 2008. SINGLETON, C. K; MARTIN, P. R. Molecular Mechanisms of Thiamine Utilization. Current Molecular Medicine, v. 1, p. 197-207, 2001. SUN, L et al. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life sciences, v. 86, n. 1, p. 39- 44, 2010.50 SUPINSKI, G. et al. Effect of free radical scavengers on diaphragmatic fatigue. American Journal of Respiratory and Critical Care Medicine, v. 155, n. 2, p. 622-629, 1997. TURRENS, J. F. Mitochondrial formation of reactive oxygen species. The Journal of physiology, v. 552, n. 2, p. 335-344, 2003. VAZ, M., et al. Micronutrient supplementation improves physical performance measures in Asian Indian school-age children. The Journal of nutrition, v. 141, n. 11, p. 2017-2023, 2011. VIDHYA, A.; RENJUGOPAL, V.; INDIRA, M. Impact of Thiamine supplementation in the reversal of ethanol induced toxicity in rats. Indian Journal of Physiology and Pharmacology, v. 57, n. 4, p. 406–417, 2013. VOLLAARD, N. B. J; SHEARMAN, J. P.; COOPER, C. E. Exercise-induced oxidative stress: Myths, Realities and Physiological Relevance. Sports medicine, v. 35, n. 12, p. 1045- 1062, 2005. WANG, C. et al. Effect of ascorbic acid and thiamine supplementation at different concentrations on lead toxicity in liver. Annals of Occupational Hygiene, v. 51, n. 6, p. 563- 569, 2007. WEBSTER, J. M. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. European Journal of Applied Physiology, v. 77, p. 486- 491, 1998. WEBSTER, J. M., et al. The effect of a thiamin derivative on exercise performance. European Journal of Applied Physiology, v. 75, p. 520-524, 1997. WILLIAMS, C.; DEVLIN, J. T. Foods, nutrition and sports performance. Londres: E & FN SPON, 1994. WOOD, T. Physiological functions of the pentose phosphate pathway. Cell biochemistry and function, v. 4, n. 4, p. 241-247, 1986. XIE, F. et al. Pharmacokinetic study of benfotiamine and the bioavailability assessment compared to thiamine hydrochloride. The Journal of Clinical Pharmacology, v. 54, n. 6, p. 688-695, 2014. YANG, Z. et al. The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure. Eye science/" Yan ke xue bao" bian ji bu, v. 20, n. 4, p. 259-263, 2004. YFANTI, C. et al. Antioxidant supplementation does not alter endurance training adaptation. Medicine & Science In Sports & Exercise, p. 1388-1395, 2009.51 YILMAZ, I. et al. The effects of thiamine and thiamine pyrophosphate on alcohol-induced hepatic damage biomarkers in rats. European Review for Medical and Pharmacology Science, v. 19, n. 4, p. 664-70, 2015. ZEMPLENI, J. et al. Handbook of vitamins. CRC Press, 2013. ZHAO, Y. et al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer research, v. 65, n. 9, p. 3745-3750, 2005. ZOPPI, C. C. Mecanismos moleculares sinalizadores da adaptação ao treinamento físico. Revista de Saúde, v. 1, p. 60-70, 2005. ZUBARAN, C; FERNANDES, J. G; RODNIGHT, R. Wernicke-Korsakoff syndrome. Postgraduate Medicine Journal, v. 73, p. 27-31, 1997.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2018-03-23T18:43:33Zoai:bdtd.uftm.edu.br:tede/367Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2018-03-23T18:43:33Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
title Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
spellingShingle Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
GONÇALVES, Álisson de Carvalho
Tiamina.
Estresse Oxidativo.
Esforço Físico
Oxidative stress.
Physical effort.
Thiamine.
Metabolismo e Bioenergética
title_short Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
title_full Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
title_fullStr Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
title_full_unstemmed Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
title_sort Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance
author GONÇALVES, Álisson de Carvalho
author_facet GONÇALVES, Álisson de Carvalho
author_role author
dc.contributor.none.fl_str_mv PORTARI, Guilherme Vannucchi
26157082879
http://lattes.cnpq.br/6076945534196087
dc.contributor.author.fl_str_mv GONÇALVES, Álisson de Carvalho
dc.subject.por.fl_str_mv Tiamina.
Estresse Oxidativo.
Esforço Físico
Oxidative stress.
Physical effort.
Thiamine.
Metabolismo e Bioenergética
topic Tiamina.
Estresse Oxidativo.
Esforço Físico
Oxidative stress.
Physical effort.
Thiamine.
Metabolismo e Bioenergética
description Os altos níveis de espécies reativas de oxigênio podem desencadear um desequilíbrio no estado redox capaz de gerar danos oxidativos a macromoléculas. O presente estudo objetivou investigar a influência da suplementação oral com benfotiamina sobre o estresse oxidativo e a atividade antioxidante no músculo de camundongos treinados. Vinte e cinco ratos Balb / c machos foram alocados nos grupos Pad-Sed: dieta padrão e sedentário (n=6); Ben-Sed: suplementação com benfotiamina e sedentário (n=6); Sta-Tr: dieta padrão e treinado (n=6); Ben-Tr: Suplementação com benfotiamina e treinado (n=7). Os camundongos treinados foram submetidos a treinamento de endurance em natação durante 6 semanas, com um teste de exaustão ao final do protocolo de treinamento. A concentração de malondialdeído livre (MDA), proteínas ligadas a malondialdeído (PrMDA) e tióis não proteicos bem como a atividade das enzimas catalase (CAT) e superóxido dismutase (SOD) foram analisadas no músculo gastrocnêmio. Não houve diferença no tempo de resistência à exaustão e na concentração de lactato pós-exaustão. A concentração de MDA foi menor no grupo Ben-Tr em relação aos grupos sedentários. A concentração de PrMDA foi maior no grupo Pad-Sed em relação aos demais grupos. Os nívéis de tióis foram maiores no grupo Ben-Sed em relação aos grupos não suplementados. A atividade da CAT foi mais acentuada em ambos os grupos suplementados. A SOD mostrou-se mais eficiente no grupo Ben-Tr que nos grupos não suplementados. Os resultados mostraram que a suplementação de benfotiamina é uma estratégia antioxidante eficiente, capaz de prevenir os danos oxidativos musculares em indivíduos engajados em programas de treinamento em endurance. Em conclusão, a benfotiamina é eficiente em prevenir danos oxidativos musculares e não interfere no desempenho de endurance.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-01T13:49:14Z
2017-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GONÇALVES, Álisson de Carvalho. Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance. 2017. 54f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
http://bdtd.uftm.edu.br/handle/tede/367
identifier_str_mv GONÇALVES, Álisson de Carvalho. Efeito da suplementação com benfotiamina sobre parâmetros de estresse oxidativo muscular de camundongos submetidos a treinamento de endurance. 2017. 54f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
url http://bdtd.uftm.edu.br/handle/tede/367
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv ANDERSON, E. J.; KATUNGA, L. A.; WILLIS, M. S. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clinical and Experimental Pharmacology and Physiology, v. 39, n. 2, p. 179-193, 2012. ANDRADE, F. H. et al. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. The Journal of physiology, v. 509, n. 2, p. 565-575, 1998. ANDRADE, F. H.; REID, M. B.; WESTERBLAD, H. Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redoxmodulation. The FASEB Journal, v. 15, n. 2, p. 309-311, 2001. ASLANI, B. A.; GHOBADI, S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life sciences, v. 146, p. 163-173, 2016. BANDYOPADHYAY, U; DAS, D; BANERJEE, R. K. Reactive oxygen species: oxidative damage and pathogenesis. CURRENT SCIENCE-BANGALORE-, v. 77, p. 658-666, 1999. BEJMA, J; JI, L. L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. Journal of Applied Physiology, v. 87, n. 1, p. 465-470, 1999. BIRBEN, E. et al. Oxidative stress and antioxidant defense. World Allergy Organization Journal, v. 5, n. 1, p. 1, 2012. BLASS, J. P; GIBSON, G. E. Abnormality of thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. The New England Journal of Medicine, v. 297, n. 25, p. 1367-1370, 1977. BOLAÑOS, J. P. et al. Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica et Biophysica Acta (BBA)-Bioenergetics, v. 1777, n. 7, p. 789-793, 2008. BOZIC, I. et al. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells. Frontiers in cellular neuroscience, v. 9, 2015. BROWN, N. M. et al. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, v. 101, n. 15, p. 5518-5523, 2004. BUBBER, P. et al. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochemistry International, v. 45, p. 1021–1028, 2004.45 BUTTERWORTH, R. F.; BESNARD, A. M. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer's disease. Metabolic Brain Disease, v. 5, n. 4, 1990. BUTTERWORTH, R. F.; GIGUIRE, J. F.; BESNARD, A. M. Activities of thiaminedependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. α- ketoglutarate dehydrogenase. Neurochernical Research, v. 11, n. 4, p. 567-577, 1986. CAROCHO, M.; FERREIRA, I. C. F. R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, v. 51, p. 15-25, 2013. CARPENTER, K. J. Beriberi, white rice and vitamin B: a disease, a cause and a cure. University of California press, Berkeley, CA, 2000. CAZZOLA, R. et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. European Journal of Clinical Investigation, v. 33, 924-930, 2003. CHEN, W-C. et al. Whey protein improves exercise performance and biochemical profiles in trained mice. Medicine & Science in Sports & Exercise, v. 46, n. 8, p 1517–1524, 2014 COBLEY, J. N. et al. N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab, v. 21, n. 6, p. 451-61, 2011. COOPER, C. E. et al. Exercise, free radicals and oxidative stress. Biochemical Society Transitions, v. 30, p. 280-285, 2002. CROSS, C. E. et al. Oxygen radicals and human disease. Annals of internal medicine, v. 107, n. 4, p. 526-545, 1987. DHOUIB, I. E. et al. A minireview on N-acetylcysteine: An old drug with new approaches. Life sciences, v. 151, p. 359-363, 2016. DOYLE, M. R.; WEBSTER, J. M.; ERDMANN, L, D. Allithiamine ingestion does not enhance isokineti parameters of muscle performance. International Journal of Sport Nutrition, v. 7, p. 39-47, 1997. DRAHOTA, Z. et al. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. Journal of bioenergetics and biomembranes, v. 34, n. 2, p. 105-113, 2002. DRANE, P. et al. Reciprocal down-regulation of p53 and SOD2 gene expression–implication in p53 mediated apoptosis. Oncogene, v. 20, n. 4, 2001.46 ENGLAND, K.; COTTER, T. G. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Report, 2013. FINAUD, J.; LAC, G.; FILAIRE, E. Oxidative stress: relationship with exercise and training. Sports medicine, v. 36, n. 4, p. 327-358, 2006. FRANK, T. et al. High thiamine diphosphate concentrations in erythrocytes can be achieved in dialysis patients by oral administration of benfotiamine. European journal of clinical pharmacology, v. 56, n. 3, p. 251-257, 2000. FRIDOVICH, I. Superoxide radical and superoxide dismutases. Annual review of biochemistry, v. 64, n. 1, p. 97-112, 1995. GIODA, C. R. et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. American Journal of Physiology-Heart and Circulatory Physiology, v. 298, n. 6, p. 2039-2045, 2010. GOMEZ-CABRERA, M. C. et al. Oral administration of vitamin C decreases muscle mithocondrial biogenesis and hampers training-induced adaptations on endurance performance. American Journal of Clinical Nutrition, v. 87, p. 142-149, 2008 GRINTZALIS, K. et al. Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides. Free Radical Biology and Medicine, v. 59, p. 27-35, 2013. HADWAN, M. H. New Method for Assessment of Serum Catalase Activity. Indian Journal of Science and Technology, v. 9, n. 4, 2016. HALLIWELL, B.; GUTTERIDGE, J. M. C. Free radicals in biology and medicine. Oxford University Press, USA, 2015. HAMMES, H-P. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature medicine, v. 9, n. 3, p. 294-299, 2003. HANNINEN, S. A. et al. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. Journal of the American College of Cardiology, v.47, n. 2, 2006. HIGUCHI, M. et al. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. Journal of gerontology, v. 40, n. 3, p. 281-286, 1985. HORWITT, M. K.; KREISLER, O. The determination of early thiamine-deficient states by estimation of blood lactic and pyruvic acids after glucose administration and exercise. Journal of Nutrition, v. 37, n. 4, p. 411-427, 1949.47 HUANG, C. C. et al. Triterpenoid-rich extract from Antrodia camphorata improves physical fatigue and exercise performance in mice. Evidence-Based Complementary and Alternative Medicine, v. 2012, 2012. JACKSON, M. J. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radical Biology and Medicine, v. 44, n. 2, p. 132-141, 2008. JACKSON, M. J. Strategies for reducing oxidative damage in ageing skeletal muscle. Advanced drug delivery reviews, v. 61, n. 14, p. 1363-1368, 2009. JENDZJOWSKY, N. G.; DELOREY, D. S. Acute superoxide scavenging reduces sympathetic vasoconstrictor responsiveness in short-term exercise-trained rats. Journal of Applied Physiology, v. 114, n. 11, p. 1511-1518, 2013. JI, L. L. Exercise‐induced modulation of antioxidant defense. Annals of the New York Academy of Sciences, v. 959, n. 1, p. 82-92, 2002. JIMÉNEZ-JIMÉNEZ, F. J. et al. Cerebrospinal fluid levels of thiamine in patients with Parkinson's disease. Neuroscience Letters, v. 271, p. 33-36, 1999. JONES, D. P. Redefining oxidative stress. Antioxidants & redox signaling, v. 8, n. 9-10, p. 1865-1879, 2006. JUNH, M. S. Popular Sports Supplements and Ergogenic Aids. Sports Medicine, v. 33, n. 12, p. 921-939, 2003. KARACHALIAS, N. et al. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia, v. 53, n. 7, p. 1506-1516, 2010. KARUPPAGOUNDER, S. S. et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiology of Aging, v. 30, p.1587–1600, 2009. KHAWLI, F. A.; REID, M. B. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. Journal of Applied Physiology, v. 77, n. 1, p. KIRKMAN, H. N.; GALIANO, S.; GAETANI, G. F. The function of catalase-bound NADPH. Journal of Biological Chemistry, v. 262, n. 2, p. 660-666, 1987. KUWAHARA, H. et al. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radical Biology and Medicine, v. 48, n. 9, p. 1252-1262, 2010. KWOK, J. et al. Thiamine status of elderly patients with cardiac failure. Age and Ageing, v. 21, p. 67-71, 1992.48 LEEUWENBURGH, CHRISTIAAN et al. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. American Journal of PhysiologyRegulatory, Integrative and Comparative Physiology, v. 272, n. 1, p. R363-R369, 1997. LONSDALE, D. A review of the biochemistry, metabolism and clinical benefits of thiamin (e) and its derivatives. Evidence-based complementary and alternative medicine, v. 3, n. 1, p. 49–59, 2006. LU, Shelly C. Regulation of glutathione synthesis. Current topics in cellular regulation, v. 36, p. 95-116, 2001. LUKASKI, H. C. Vitamin and mineral status: effects on physical performance. Nutrition, v. 20. n. 7-8, p. 632-644. 2004. LUKIENKO, P. I. et al. Antioxidant properties of thiamine. Bulletin of experimental biology and medicine, v. 130, n. 3, p. 874-876, 2000. MARÍ, M. et al. Mitochondrial glutathione, a key survival antioxidant. Antioxidants & redox signaling, v. 11, n. 11, p. 2685-2700, 2009. MARKLUND, S; MARKLUND, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European Journal of Biochemestry, v. 47, p. 469-474, 1974. MAY, J. M.; HARRISON, F. E. Role of vitamin C in the function of the vascular endothelium. Antioxidants & redox signaling, v. 19, n. 17, p. 2068-2083, 2013. McARDLE, W. D.; KATCH, F. I; KATCH, V. L. Exercise Physiology: Nutrition, Energy, and Human Performance. Lippincott Williams & Wilkins, 2010 - 1038 p MCLURE, K.G.; TAKAGI, M.; KASTAN, M. B. NAD+ modulates p53 DNA binding specificity and function. Molecular and cellular biology, v. 24, n. 22, p. 9958-9967, 2004. MIYAZAKI, H. et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European journal of applied physiology, v. 84, n. 1-2, p. 1- 6, 2001. NICHOLLS, P. Classical catalase: ancient and modern. Archives of biochemistry and biophysics, v. 525, n. 2, p. 95-101, 2012. PÁCAL, L.; KURICOVÁ, K.; KAŇKOVÁ, K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco-and lipotoxicity by rational supplementation? World journal of diabetes, v. 5, n.3, p. 288, 2014. PADOVANI, R. M. et al. Dietary reference intakes: aplicabilidade das tabelas em estudos nutricionais. Revista de Nutrição, Campinas, v. 19, n. 6, p. 741-760, 2006.49 POLOTOW, T. G. et al. Astaxanthin supplementation delays physical exhaustion and prevents redox imbalances in plasma and soleus muscles of Wistar rats. Nutrients, v. 6, n. 12, p. 5819-5838, 2014. PORTARI, G. V. et al. Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication. Life Sciences, v. 162, p. 21-24, 2016. PORTARI, G. V.; VANNUCCHI. H.; JORDÃO, A. A. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: A comparison of thiamine and benfotiamine administration. European Journal of Pharmaceutical Sciences, v. 48, p. 799–802, 2013. POWERS, S.; NELSON, W. B.; LARSON-MEYER, E. Antioxidant and vitamin D supplements for athletes: sense or nonsense? Journal of Sports Sciences, v. 29, n. sup1, p. S47-S55, 2011. REID, M. B. et al. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. Journal of Applied Physiology, v. 73, n. 5, p. 1805-1809, 1992. REZNICK, A. Z.; PACKER, L.. Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods in enzymology, v. 233, p. 357-363, 1994. RODRIGUEZ, D. A. et al. Muscle and blood redox status after exercise training in severe COPD patients. Free Radical Biology and Medicine, v. 52, n. 1, p. 88-94, 2012. RODRIGUEZ, N. R. et al. Position of the American dietetic association, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. Journal of the American Dietetic Association, v. 109, n. 3, p. 509-527, 2009. ROMIJN, J. A. et al. Substrate metabolism during different exercise intensities in endurancetrained women. Journal of Applied Physiology, v. 88, n. 5, p. 1707- 1714. 2000. SAMJOO, I. A. et al. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutrition & diabetes, v. 3, n. 9, p. e88, 2013. SCHMID, U. et al. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes/metabolism research and reviews, v. 24, n. 5, p. 371- 377, 2008. SINGLETON, C. K; MARTIN, P. R. Molecular Mechanisms of Thiamine Utilization. Current Molecular Medicine, v. 1, p. 197-207, 2001. SUN, L et al. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life sciences, v. 86, n. 1, p. 39- 44, 2010.50 SUPINSKI, G. et al. Effect of free radical scavengers on diaphragmatic fatigue. American Journal of Respiratory and Critical Care Medicine, v. 155, n. 2, p. 622-629, 1997. TURRENS, J. F. Mitochondrial formation of reactive oxygen species. The Journal of physiology, v. 552, n. 2, p. 335-344, 2003. VAZ, M., et al. Micronutrient supplementation improves physical performance measures in Asian Indian school-age children. The Journal of nutrition, v. 141, n. 11, p. 2017-2023, 2011. VIDHYA, A.; RENJUGOPAL, V.; INDIRA, M. Impact of Thiamine supplementation in the reversal of ethanol induced toxicity in rats. Indian Journal of Physiology and Pharmacology, v. 57, n. 4, p. 406–417, 2013. VOLLAARD, N. B. J; SHEARMAN, J. P.; COOPER, C. E. Exercise-induced oxidative stress: Myths, Realities and Physiological Relevance. Sports medicine, v. 35, n. 12, p. 1045- 1062, 2005. WANG, C. et al. Effect of ascorbic acid and thiamine supplementation at different concentrations on lead toxicity in liver. Annals of Occupational Hygiene, v. 51, n. 6, p. 563- 569, 2007. WEBSTER, J. M. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. European Journal of Applied Physiology, v. 77, p. 486- 491, 1998. WEBSTER, J. M., et al. The effect of a thiamin derivative on exercise performance. European Journal of Applied Physiology, v. 75, p. 520-524, 1997. WILLIAMS, C.; DEVLIN, J. T. Foods, nutrition and sports performance. Londres: E & FN SPON, 1994. WOOD, T. Physiological functions of the pentose phosphate pathway. Cell biochemistry and function, v. 4, n. 4, p. 241-247, 1986. XIE, F. et al. Pharmacokinetic study of benfotiamine and the bioavailability assessment compared to thiamine hydrochloride. The Journal of Clinical Pharmacology, v. 54, n. 6, p. 688-695, 2014. YANG, Z. et al. The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure. Eye science/" Yan ke xue bao" bian ji bu, v. 20, n. 4, p. 259-263, 2004. YFANTI, C. et al. Antioxidant supplementation does not alter endurance training adaptation. Medicine & Science In Sports & Exercise, p. 1388-1395, 2009.51 YILMAZ, I. et al. The effects of thiamine and thiamine pyrophosphate on alcohol-induced hepatic damage biomarkers in rats. European Review for Medical and Pharmacology Science, v. 19, n. 4, p. 664-70, 2015. ZEMPLENI, J. et al. Handbook of vitamins. CRC Press, 2013. ZHAO, Y. et al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer research, v. 65, n. 9, p. 3745-3750, 2005. ZOPPI, C. C. Mecanismos moleculares sinalizadores da adaptação ao treinamento físico. Revista de Saúde, v. 1, p. 60-70, 2005. ZUBARAN, C; FERNANDES, J. G; RODNIGHT, R. Wernicke-Korsakoff syndrome. Postgraduate Medicine Journal, v. 73, p. 27-31, 1997.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Física
Brasil
UFTM
Programa de Pós-Graduação em Educação Física
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Física
Brasil
UFTM
Programa de Pós-Graduação em Educação Física
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1813013338987167744