Investigação molecular de variantes genéticas do gene FTO na obesidade infantil

Detalhes bibliográficos
Autor(a) principal: CARVALHO, Mariana Teixeira de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/785
Resumo: A prevalência da obesidade vem crescendo de forma expressiva no mundo todo, chegando a ser considerada, em muitos lugares, a maior epidemia de saúde pública e a principal causa de morte prematura. É definida como um acúmulo anormal ou excessivo de gordura que pode prejudicar a saúde. Inúmeros estudos têm avaliado genes e sua associação com a obesidade infantil. O gene FTO (fat mass and obesity associated) é um dos mais relacionados à obesidade, no qual sua superexpressão está relacionada ao aumento de peso nesta condição, podendo ser modulada por variantes genéticas. Este trabalho tem como objetivos investigar as frequências das variantes genéticas rs9940128, rs8050136, rs9939609 do gene FTO, em crianças com sobrepeso e obesidade e verificar associação destas e parâmetros como sexo, histórico de obesidade na família e atividade física com a obesidade infantil. Trata-se de um estudo do tipo caso-controle retrospectivo com 364 indivíduos, dos quais o grupo de estudo compreendeu 186 crianças e adolescentes entre 5 e 19 anos diagnosticadas com sobrepeso ou obesidade. Fizeram parte do grupo controle 178 adultos, os quais não tiveram sobrepeso ou obesidade na infância. Para a avaliação das variantes genéticas foi realizada a técnica de PCR em Tempo Real, PCR aleloespecífico e PCR-RFLP. Para comparar as distribuições das frequências alélicas e genotípicas entre os grupos e verificar se as distribuições genotípicas estavam em Equilíbrio de Hardy-Weinberg (EHW), foi utilizado o teste de Qui-Quadrado (2). Para a análise do modelo de herança e dos haplótipos, foi utilizado o programa SNPStats. O modelo de regressão logística múltipla foi utilizado para determinar o efeito das variáveis analisadas e o desenvolvimento de obesidade infantil, incluindo fatores sociodemográficos, sinais clínicos e dados moleculares. O nível de significância considerado foi de 5% (p≤ 0,05). A frequência do genótipo heterozigoto foi maior nos grupos estudados para as três variantes genéticas. Na análise de regressão logística, o parâmetro mãe com excesso de peso e presença do alelo A da variante genética rs9940128 foram estatisticamente significativos (0,0225 e 0,0439, respectivamente). Não foi encontrada associação das variantes genéticas rs9940128 G>A, rs8050136 A>C e rs9939609 A>T, dos haplótipos, modelos de herança mendeliana e os parâmetros estudados com a obesidade infantil, exceto para mãe com excesso de peso, o que pode conduzir a pesquisas acerca do papel da8 herdabilidade nesta doença e no monitoramento familiar de crianças que apresentam excesso de peso.
id UFTM_835e071b6a881413aa5ef7a0406f5c83
oai_identifier_str oai:bdtd.uftm.edu.br:tede/785
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling Investigação molecular de variantes genéticas do gene FTO na obesidade infantilObesidade infantil.IMC.Gene FTO.Variantes genéticas.Haplótipo.rs9940128.rs8050136.rs9939609.Childhood obesity.BMI.FTO gene.Genetic variants.Haplotype.rs9940128.rs8050136.rs9939609.GenéticaGenética Humana e MédicaA prevalência da obesidade vem crescendo de forma expressiva no mundo todo, chegando a ser considerada, em muitos lugares, a maior epidemia de saúde pública e a principal causa de morte prematura. É definida como um acúmulo anormal ou excessivo de gordura que pode prejudicar a saúde. Inúmeros estudos têm avaliado genes e sua associação com a obesidade infantil. O gene FTO (fat mass and obesity associated) é um dos mais relacionados à obesidade, no qual sua superexpressão está relacionada ao aumento de peso nesta condição, podendo ser modulada por variantes genéticas. Este trabalho tem como objetivos investigar as frequências das variantes genéticas rs9940128, rs8050136, rs9939609 do gene FTO, em crianças com sobrepeso e obesidade e verificar associação destas e parâmetros como sexo, histórico de obesidade na família e atividade física com a obesidade infantil. Trata-se de um estudo do tipo caso-controle retrospectivo com 364 indivíduos, dos quais o grupo de estudo compreendeu 186 crianças e adolescentes entre 5 e 19 anos diagnosticadas com sobrepeso ou obesidade. Fizeram parte do grupo controle 178 adultos, os quais não tiveram sobrepeso ou obesidade na infância. Para a avaliação das variantes genéticas foi realizada a técnica de PCR em Tempo Real, PCR aleloespecífico e PCR-RFLP. Para comparar as distribuições das frequências alélicas e genotípicas entre os grupos e verificar se as distribuições genotípicas estavam em Equilíbrio de Hardy-Weinberg (EHW), foi utilizado o teste de Qui-Quadrado (2). Para a análise do modelo de herança e dos haplótipos, foi utilizado o programa SNPStats. O modelo de regressão logística múltipla foi utilizado para determinar o efeito das variáveis analisadas e o desenvolvimento de obesidade infantil, incluindo fatores sociodemográficos, sinais clínicos e dados moleculares. O nível de significância considerado foi de 5% (p≤ 0,05). A frequência do genótipo heterozigoto foi maior nos grupos estudados para as três variantes genéticas. Na análise de regressão logística, o parâmetro mãe com excesso de peso e presença do alelo A da variante genética rs9940128 foram estatisticamente significativos (0,0225 e 0,0439, respectivamente). Não foi encontrada associação das variantes genéticas rs9940128 G>A, rs8050136 A>C e rs9939609 A>T, dos haplótipos, modelos de herança mendeliana e os parâmetros estudados com a obesidade infantil, exceto para mãe com excesso de peso, o que pode conduzir a pesquisas acerca do papel da8 herdabilidade nesta doença e no monitoramento familiar de crianças que apresentam excesso de peso.The prevalence of obesity has been growing significantly worldwide, and has become, in many places, the largest public health epidemic and the leading cause of premature death. It is defined as an abnormal or excessive accumulation of fat that can be harmful to health. Many studies have evaluated genes and their association with childhood obesity. The FTO (fat mass and obesity associated) gene is one of the most related to obesity, in which its overexpression is related to weight gain in this condition, and can be modulated by genetic variants. This work aims to investigate the frequencies of genetic variants rs9940128, rs8050136, rs9939609 of FTO gene in overweight and obese children and to verify the association of these and parameters such as gender, history of obesity in family and physical activity with childhood obesity. It is a retrospective case-control study with 364 individuals, of which the study group comprised 186 children and adolescents between 5 and 19 years diagnosed as being overweight or obese. A total of 178 adults were included in the control group, who were not overweight or obese in childhood. For the evaluation of the genetic variants, real-time PCR technique, allele-specific PCR and PCR-RFLP were performed. To compare the distributions of allele and genotype frequencies between the groups and to verify if the genotypic distributions were in HardyWeinberg equilibrium (EHW), the Chi-Square test (2) was used. For the analysis of the inheritance model and the haplotypes, SNPStats program was used. The multiple logistic regression model was used to determine the effect of variables analyzed and the development of childhood obesity, including sociodemographic factors, clinical signs and molecular data. The significance level considered was 5% (p≤0.05). The frequency of the heterozygous genotype was higher in the studied groups for the three genetic variants. In the logistic regression analysis, the parameter mother with excess weight and presence of the allele A of the genetic variant rs9940128 were statistically significant (0.0225 and 0.0439, respectively). No association was found between the genetic variants rs9940128 G> A, rs8050136 A> C and rs9939609 A> T, haplotypes, mendelian inheritance models and the parameters studied with childhood obesity, except for overweight mothers, which may lead to research on the role of heritability in this disease and in the family monitoring of children who are overweight.Fundação de Amparo à Pesquisa do Estado de Minas GeraisCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorConselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeBALARIN, Marly Aparecida Spadotto06268176847http://lattes.cnpq.br/9825231661876909GRECCO, Roseane Lopes da Silva07153828885CARVALHO, Mariana Teixeira de2019-07-22T17:28:26Z2017-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfCARVALHO, Mariana Teixeira de. Investigação molecular de variantes genéticas do gene FTO na obesidade infantil. 2017. 85f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.http://bdtd.uftm.edu.br/handle/tede/785porAKCA, S. O.; UYSAL, G.; BUYUKGONENC, L. A. Obesity in Nursery School Children in Corum, Turkey. Iran. Red. Crescent. Med. J., v. 18, n. 10, p. e27734, 2016. ALBUQUERQUE, D. et al. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol. Genet. Genomics, v. 290, n. 4, p. 1191-1221, 2015. ALMÉN, M. S. et al. Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. International Journal of Obesity, v. 37, p. 424–431, 2013. ANJOS, L. A. Índice de massa corporal (massa corporal estatura-2) como indicador do estado nutricional de adultos: revisão da literatura. Revista de Saúde Pública, São Paulo, v. 26, n. 6, p. 431-436, 1992. ANKER, M. S. et al. Highlights of the mechanistic and therapeutic cachexia and sarcopenia research 2010 to 2012 and their relevance for cardiology. Int. J. Cardiol., v. 162, n. 2, p. 73-6, 2013. APALASAMY, Y. D.; MOHAMED, Z. Obesity and genomics: role of technology in unraveling the complex genetic architecture of obesity. Hum. Genet., v. 134, n. 4, p. 361-74, 2015. ATTAOUA, R. et al. Association of the FTO gene with obesity and the metabolic syndrome is independent of the IRS-2 gene in the female population of Southern France. Diabetes Metab., v. 35, n. 6, p. 476-83, 2009. BARNESS, L. A. et al. Obesity: Genetic, molecular, and environmental aspects. Am. J. Med. Genet., v. 143, n. 24, p. 3016-3034, 2007. BERGLUND, E. D. et al. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci., v. 17, n. 7, p. 911-913, 2014. BERTHOLO, L. C.; MOREIRA, H. W. Amplificação gênica alelo-específica na caracterização das hemoglobinas S, C e D e as interações entre elas e talassemias beta. J. Bras. Patol. Med. Lab., v. 42, n. 4, p. 245-251, 2006. BERULAVA T, HORSTHEMKE, B. Comment on: Jowett et al. (2010) Genetic variation at the FTO locus influences RBL2 gene expression. Diabetes, v. 59, p. 726–732, 2010. BERULAVA, T.; HORSTHEMKE, B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur. J. Hum. Genet., v. 18, n. 9, p. 1054- 1056, 2010. BOMBERG, E. et al. The Financial Costs, Behaviour and Psychology of Obesity: A One Health Analysis. J. Comp. Pathol., v. 156, n. 4, p. 310-325, 2017. BONNET, M. H.; ARAND, D. L. We are chronically sleep deprived. Sleep, v. 18, n. 10, p. 908-911, 1995. BORDONI, L. et al. Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life, v. 69, n. 2, p. 98-105, 2017. BOUCHARD, C. et al. The response to exercise with constant energy intake in identical twins. Obes. Res., v. 2, n. 5, p. 400-10, 1994. BOUCHARD, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med., v. 322, n. 21, p. 1477-1482, 1990. BRANCO, L. M.; CINTRA, I. P.; FIBERG, M. Adolescente gordo ou magro: realidade ou fantasia? Nutrição Brasil, v. 5, n. 4, p. 189-194, 2006. CASTELLINI, G. et al. Fat mass and obesity-associated gene (FTO) is associated to eating disorders susceptibility and moderates the expression of psychopathological traits. PLoS One, v. 12, n. 3, 2017. CATALANO, P. M.; SHANKAR, K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ, v. 356, p. j1, 2017. CAVANILLES, E. W. et al. Effectiveness of weight loss in the treatment of nonalcoholic steatohepatitis in an obese adolescent. An. Pediatr. (Barc), v. 66, n. 2, p. 184-187, 2007. CHA, S. W. et al. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity, v. 16, n. 9, p. 2187-9, 2008. CHAMBERS, J. C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat. Genet., v. 40, n. 6, p. 716-8, 2008. CHANG, Y. C. et al. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes, v. 57, n. 8, p. 2245-52, 2008. CHEUNG, M. M.; YEO, G. S. H. FTO biology and obesity: why do a billion of us weigh 3 kg more? Front. Endocrinol., v. 2, p. 4, 2011. CHINN, S.; RONA, R. J. Prevalence and trends in overweight and obesity in three cross sectional studies of British children, 1974-94. BMJ, v. 322, n. 7277, p. 24-26, 2001. CHIU, M. et al. Deriving ethnic-specific BMI cutoff points for assessing diabetes risk. Diabetes Care, v. 34, p. 1741–1748, 2011. CHORLEY, B. N. et al. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat. Res., v. 659, n. 1-2, p. 147-157, 2008. CHUENTA, W. et al. Common variations in the FTO gene and obesity in Thais: a family-based study. Gene, v. 558, n. 1, p. 75-81, 2015. CHURCH, C. et al. Overexpression of FTO leads to increased food intake and results in obesity. Nat. Genet., v. 42, n. 12, p. 1086–1092, 2010. CLARK, A. G. The Role of Haplotypes in Candidate Gene Studies. Genetic Epidemiology, v. 27, p. 321–333, 2004. CONSIDINE, R. V.; CARO, J. F. Leptin: genes, concepts and clinical pespective. Horm. Res., v. 46, n. 6, p. 249-256, 1996. CUMMINGS, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, v. 50, n. 8, p. 1714-9, 2001. CUMMINGS, D. E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav., v. 89, n. 1, p. 71-84, 2006. DAMIANI, D.; DAMIANI, D.; OLIVEIRA, R. G. Obesidade - fatores genéticos ou ambientais? Pediatria Moderna, v. 38, n. 3, p. 57-80, 2002. DANIELS, S. R.; HASSINK, S. G. The role of the pediatrician in primary prevention of obesity. Pediatrics, v. 136, n. 1, p. 275-292, 2015. DE LUIS, D. A. et al. Relación del polimorfismo rs9939609 del gen FTO com factores de riesgo cardiovascular y niveles de adipocitoquinas en pacientes com obesidad mórbida. Nutr Hosp., v. 12, p. 27-1184, 2012. DENNISON, B. A.; ERB, T. A.; JENKINS, P. L. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics, v. 109, n. 6, p. 1028-1035, 2002. DHILLON, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron, v. 49, n. 2, p. 191- 203, 2006. DINA, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genet., v. 39, n. 6, p. 724-726, 2007. DOAEI, S. et al. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies. Indian Heart J., v. 69, n. 2, p. 277-281, 2017. DORES, R. M. Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor. Front. Neurosci., v. 7, p. 28, 2013. DWIVEDI, O. P. et al. Common Variants of FTO Are Associated with Childhood Obesity in a Cross-Sectional Study of 3,126 Urban Indian Children. PLoS One, v. 7, n. 10, p. e47772, 2012. EBBELING, C. B.; PAWLAK, D. B.; LUDWIG, D. S. Childhood obesity: public-health crisis, common sense cure. The Lancet, v. 360, n. 9331, p. 473-482, 2002. ELOUEJ, S. et al. Association of rs9939609 Polymorphism with Metabolic Parameters and FTO Risk Haplotype Among Tunisian Metabolic Syndrome. Metab. Syndr. Relat. Disord., v. 14, n. 2, p. 121-128, 2016. EROL, M. et al. Association of Osteoprotegerin with Obesity, Insulin Resistance and Non-Alcoholic Fatty Liver Disease in Children. Iran Red. Crescent. Med. J., v. 18, n. 11, p. e41873, 2016. EWENS, K. G. FTO and MC4R Gene Variants Are Associated with Obesity in Polycystic Ovary Syndrome. PloS One, v. 6, n. 1, p. e16390, 2011. FAROOQI, S. FTO and Obesity: The Missing Link. Cell Metabolism, v. 13, n. 1, p. 7- 8, 2011. FONTANIVE, R. S.; COSTA, R. S.; SOARES, E. A. Comparison between the nutritional status of eutrophic and overweight adolescents living in Brazil. Nutr. Res., v. 22, n. 6, p. 667-668, 2002. FOSTER-SCHUBERT, K. E; CUMMINGS, D. E. Emerging therapeutic strategies for obesity. Endocr Rev., v. 27, n. 7, p. 779-93, 2006. FRANZAGO, M. et al. Molecular Analysis of a Genetic Variants Panel Related to Nutrients and Metabolism: Association with Susceptibility to Gestational Diabetes and Cardiometabolic Risk in Affected Women. Journal of Diabetes Research, v. 2017, p. 4612623, 2017. FRAYLING, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, v. 316, n. 5826, p. 889-894, 2007. FREDERICH, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med., v. 12, p. 1311-1314, 1995. FREEDMAN, D. S. et al. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J. Pediatr., v. 150, n. 1, p. 12-17, 2007. FREEDMAN, D. S.; SHERRY, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics, v. 124, p. 23-34, 2009. FRIEDMAN, J. M.; HALAAS, J. L. Leptin and the regulation of body weight in mammals. Nature, v. 395, n. 6704, p. 763-770, 1998. FUEMMELER, B. F. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity, v. 16, n. 2, p. 348-355, 2008. GARCÍA-SOLÍS, P. et al. Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4-R) (rs17782313) SNP are positively associated with obesity and blood pressure in Mexican school-aged children. Br. J. Nutr., v. 10, p. 1-7, 2016. GENNUSO, J. et al. The relationship between asthma and obesity in urban minority children and adolescents. Arch. Pediatr. Adolesc. Med., v. 152, n. 12, p. 1197- 1200, 1998. GILLMAN, M. W. et al. Family dinner and diet quality among older children and adolescents. Arch. Fam. Med., v. 9, n. 3, p. 235-240, 2000. GODFREY, K. M. et al. Influence of maternal obesity on the long-term health of offspring. Lancet. Diabetes. Endocrinol., v. 5, n. 1, p. 53-64, 2017. GONZÁLEZ-RUIZ, K. et al. The Effects of Exercise on Abdominal Fat and Liver Enzymes in Pediatric Obesity: A Systematic Review and Meta-Analysis. Child Obes., v. 21, 2017. GONZÁLEZ-SÁNCHEZ, J. L. et al. Variant rs9939609 in the FTO gene is associated with obesity in an adult population from Spain. Clin. Endocrinol., v. 70, n. 3, p. 390- 3, 2009. GORTMAKER, S. L. et al. Increasing pediatric obesity in the United States. Am. J. Dis. Child., v. 141, p. 535-540, 1987. GRANT, S. F. et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One, v. 3, n. 3, p. e1746, 2008. GRIFFITHS, L. J. et al. Risk factors for rapid weight gain in preschool children: findings from a UK-wide prospective study. Int. J. Obes. (Lond), v. 34, n. 4, p. 624- 632, 2010. GUÍZAR-MENDOZA, J. M. et al. Association analysis of the Gln223Arg polymorphism in the human leptin receptor gene, and traits related to obesity in Mexican adolescents. J. Hum. Hypertens., v. 19, n. 5, p. 341-346, 2005. GUPTA, N. K. et al. Is obesity associated with poor sleep quality in adolescents? Am. J. Hum. Biol., v. 14, n. 6, p. 762-768, 2002. HALFORD, J. C. et al. Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs, v. 67, n. 1, p. 27-55, 2007. HANADA, R. et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat. Med., v. 10, n. 10, p. 1067-73, 2004. HARBRON, J. et al. Fat Mass and Obesity-Associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese caucasian adults. Nutrients, v. 6, n. 8, p. 3130-3152, 2014. HASLER, G. et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep, v. 27, n. 4, p. 661-666, 2004. HAVEL, P. J. et al. Gender differences in plasma leptin concentrations. Nat. Med., v. 2, n. 9, p. 949-950, 1996. HE, Q. et al. Trunk fat and blood pressure in children through puberty. Circulation, v. 105, n. 9, p. 1093-1098, 2002. HEILS, A. et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem., v. 66, n. 6, p. 2621-2624, 1996. HEISLER, L. K. et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron., v. 51, n. 2, p. 239-249, 2006. HINNEY, A. et al. Genome Wide Association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One, v. 2, n. 12, p. 1361, 2007. HOTTA, K. et al. Variations in the FTO gene are associated with severe obesity in the Japanese. J. Hum. Genet., v. 53, n. 6, p. 546-553, 2008. HUANG, X. et al. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur. J. Cancer Care, v. 1, p. e12464, 2016. IP, E.H. et al. Determinants of Adiposity Rebound Timing in Children. J. Pedriatr., v. 184, p. 151-156, 2017. IRBY, M. et al. Motivational interviewing in a family-based pediatric obesity program: a case study. Fam. Syst. Health, v. 28, n. 3, p. 236-246, 2010. JOHAR, D.R.; BERNSTEIN, L.H. Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Res. Clin. Pract., v. 126, p. 222-229, 2017. JONSSON, A. et al. Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia, v. 52, n. 7, p. 1334-8. 2009. JUNQING, W. et al. Association of FTO Polymorphisms with Obesity and Metabolic Parameters in Han Chinese Adolescents. PloS One, v. 9, n. 6, p. e98984, 2014. JUONALA, M. et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med., v. 365, n. 20, p. 1876-1885, 2011. KEANE, E., et al. Physical Activity, Sedentary Behaviour and the Risk of Overweight and Obesity in School Aged Children. Pediatr. Exerc. Sci., v. 7, p. 1-27, 2017. KELISHADI, R.; AZIZI-SOLEIMAN, F. Controlling childhood obesity: A systematic review on strategies and challenges. J. Res. Med. Sci., v. 19, n. 10, p. 993–1008, 2014. KELLY, A. S. et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation, v. 128, n. 15, p. 1689-1712, 2013. KLIMENTIDIS, Y. C. et al. Associations of obesity genes with obesity-related outcomes in multiethnic children. Arch. Med. Res., v. 42, n. 6, p. 509-514, 2011. KLÖTING, N. et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia, v. 51, n. 4, p. 641-647, 2008. KOHATSU, N. D. et al. Sleep duration and body mass index in a rural population. Arch. Intern. Med., v. 166, n. 16, p. 1701-1705, 2006. KOJIMA, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, v. 402, n. 6762, p. 656-60, 1999. KOUSTA, E. et al. Pleiotropic genetic syndromes with developmental abnormalities associated with obesity. Journal of Pediatric Endocrinology & Metabolism, v. 22, p. 581-592, 2009. KRIPKE, D. F. et al. Mortality associated with sleep duration and insomnia. Arch. Gen. Psychiatry, v. 59, n. 2, p. 131-136, 2002. KUMAR, S.; KELLY, A. S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc., v. 92, n. 2, p. 251-265, 2017. LABAYEN, I. et al. Association between the FTO rs9939609 polymorphism and leptin in European adolescents: a possible link with energy balance control. The HELENA study. Int. J. Obes., v. 35, n. 1, p. 66-71, 2011. LAINSCAK, M. et al. Ghrelin and neurohumoral antagonists in the treatment of cachexia associated with cardiopulmonary disease. Intern. Med., v. 45, n. 13, p. 837, 2006. LAKSHMAN, R.; ELKS, C. E.; ONG, K. K. Childhood obesity. Circulation, v. 126, n. 14, p. 1770-1779, 2012. LAW, C. et al. A pragmatic evaluation of a family-based intervention for childhood overweight and obesity. NIHR Journals Library, v. 2, n. 5, 2014. LEIN, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature, v. 445, p. 168-176, 2007. LEINNINGER, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab., v. 14, n. 3, p. 313- 223, 2011. LIM, B. K. et al. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, v. 487, n. 7406, p. 183-9, 2012. LIU, Y.; CHEN, Y. Fat Mass and Obesity Associated Gene Polymorphism and the Risk of Polycystic Ovary Syndrome: A Meta-analysis. Iran J. Public Health, v. 46, n.1, p. 4-11, 2017. LLEWELLYN, C. H. et al. Finding the missing heritability in pediatric obesity: the contribution of genome-wide complex trait analysis. Int. J. Obes., v. 37, n. 11, p. 1506–1509, 2013. LOBSTEIN, T.; BAUR, L.; UAUY, R. Obesity in children and young people: a crisis in public health. Obesity Reviews, v. 5, p. 4-104, 2004. LÓPEZ, P. P. et al. Development of a sleeve gastrectomy weight loss model in obese Zucker rats. J. Surg. Res., v. 157, n. 2, p. 243-50, 2009. LOSS, R. J.; GILES, S. H. The bigger picture of FTO – the first GWAS-identified obesity gene. Nat. Rev. Endocrinol., v. 10, n. 1, p. 51-61, 2014. LOW, S. et al. Rationale for redefining obesity in Asians. Ann. Acad. Med., v. 38, p. 66–74, 2009. LU, Y.; LOOS, R. J. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med., v. 5, n. 6, p. 55, 2013. LUDER, E.; MELNIK, T. A.; DIMAIO, M. Association of being overweight with greater asthma symptoms in inner city black and Hispanic children. J. Pediatr., v. 132, n. 4, p. 699-703, 1998. LUSTIG, R. H. The neuroendocrinology of childhood obesity. Pediatr. Clin. North. Am., v. 48, n. 4, p. 909-930, 2001. MAFFEIS, C.; MORANDI, A. Effect of Maternal Obesity on Foetal Growth and Metabolic Health of the Offspring. Obes Facts., v. 10, n. 2, p.112-117, 2017. MARQUES-LOPES, I. et al. Genetics of obesity. Rev. Nutr., v. 17, n. 3, p. 327-338, 2004. MARTINEZ, V. G.; O'DRISCOLL, L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin. Chem., v. 61, n. 3, p. 471-82, 2015. MARTÍNEZ-HERNÁNDEZ, A. et al. Genetics of Obesity. Public Health Nutrition, v. 10, n. 10, p.1138-1144, 2007. MATHUR, P.; DAS, M. K.; ARORA, N. K. Non-alcoholic fatty liver disease and childhood obesity. Indian J. Pediatr., v. 74, n. 4, p. 401-407, 2007. MATSUDO, S. A.; PASCHOAL, V. C. A.; AMANCIO, O. M. S. Atividade física e sua relação com o crescimento e a maturação biológica de crianças. Cadernos de Nutrição, v. 14, p. 1-12, 2003. MEAD, E. et al. Drug interventions for the treatment of obesity in children and adolescents. Cochrane Database Syst. Rev., v. 11, p. CD012436, 2016. MEI, H. et al. Longitudinal replication studies of GWAS risk SNPs influencing body mass index over the course of childhood and adulthood. PLoS One, v. 7, n. 2, p. e31470, 2012. MELDRUM, D. R.; MORRIS, M. A.; GAMBONE, J. C. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil. Steril., v. 107, n. 4, p. 833-839, 2017. MELLO, E. D.; LUFT, V. C.; MEYER, F. Obesidade infantil: como podemos ser eficazes? Jornal de Pediatria, v. 80, n. 3, p. 173-182, 2004. MENG, X. R. et al. Association study of childhood obesity with eight genetic variants recently identified by genome-wide association studies. Pediatr. Res., v. 76, n. 3, p. 310-5, 2014. MERKESTEIN, M. et al. FTO influences adipogenesis by regulating mitotic clonal expansion. Nature Communications, v. 6, p. 6792, 2015. Ministério da Saúde. Caderno de Atenção Básica. Obesidade, n. 12, 2009. MIRANDA, R. C. K. et al. Biallelic and triallelic approaches of 5-HTTLPR polymorphism are associated with food intake and nutritional status in childhood. J. Nutr. Biochem., v. 43, p. 47-52, 2017. MONTEIRO, C. A. et al. Da desnutrição para a obesidade: a transição nutricional no Brasil. In: MONTEIRO, C.A. Velhos e novos males da saúde no Brasil: a evolução do país e de suas doenças. Hucitec, v. 29, n. 6, p. 247-255, 1995. MORRIS, R. W.; KAPLAN, N. L. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genetic Epidemiology, v. 23, p. 221–233, 2002. MÜLLER T. D. et al. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J. Cachexia Sarcopenia Muscle, v. 1, n. 2, p. 159-167, 2010. MÜLLER, T. D. et al. Ghrelin. Mol. Metab., v. 4, n. 6, p. 437-60, 2015. NAKAZATO, M. et al. A role for ghrelin in the central regulation of feeding. Nature, v. 409, n. 6817, p. 194-8, 2001. NAMJOU, B. et al. EMR-linked GWAS study: investigation of variation landscape of loci for body mass index in children. Frontiers in Genetics, v. 4, p. 268, 2013. NELSON, S. M.; FLEMING, R. Obesity and reproduction: impact and interventions. Curr. Opin. Obstet. Gynecol., v. 19, n. 4, p. 384-389, 2007. NEUSCHWANDER-TETRI, B. A.; CALDWELL, S. H. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology, v. 38, n. 2, p. 536, 2003. NIKOLOPOULOU, A; KADOGLOU, N. P. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev. Cardiovasc. Ther., v. 10, n. 7, p. 933–939, 2012. OGDEN, C. L. et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA, v. 311, n. 8, p. 806-814, 2014. OMS – Organização Mundial da Saúde. Obesity: Development of a WHO growth reference for school-aged children and adolescents: Growth reference 5-19 years. Bulletin of the World Health Organization, v. 85, p. 660-667, 2007. OMS – Organização Mundial da Saúde. Consideration of the evidence on childhood obesity for the commission on ending childhood obesity. Geneva (CHE), 2016. OMS – Organização Mundial da Saúde. Estimated overweight & obesity show. WHO Global Infobase, 2002, 2005, 2010. OMS – Organização Mundial da Saúde. Prevalence of obesity, ages 18+, 1975- 2014. Global Health Observatory (GHO), 2016. OTTAWAY, N. et al. Diet-induced obese mice retain endogenous leptin action. Cell Metab., v. 21, n. 6, p. 877-882, 2015. OTTO, B. et al. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology, v. 30, n. 6, p. 577-81, 2005. OTTO, B. et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol., v. 145, n. 5, p. 669-73, 2001. PADILHA, P. C. et al. Prevalence of nonalcoholic fatty liver disease in obese children and adolescents: a systematic review. Rev. Paul. Pediatr., v. 28, n. 4, p. 387-393, 2010. PAPANDREOU, D.; ROUSSO, I.; MAVROMICHALIS, I. Update on non-alcoholic fatty liver disease in children. Clin. Nutr., v. 26, n. 4, p. 409-415, 2007. PAPATHANASOPOULOS, A. et al. A preliminary candidate genotype-intermediate phenotype study of satiation and gastric motor function in obesity. Obesity, v. 18, n. 6, p. 1201-1211, 2010. PEETERS, A. et al. Variants in the FTO gene are associated with common obesity in the Belgian population. Mol. Genet. Metab., v. 93, n. 4, p. 481-4, 2008. PEINO, R. et al. Ghrelin-induced growth hormone secretion in humans. Eur. J. Endocrinol., v. 143, n. 6, p. 11-14, 2000. PELEGRINI, A. et al. Indicadores antropométricos de obesidade na predição de gordura corporal elevada em adolescentes. Revista Paulista de Pediatria, v. 33, n. 1, p. 56-62, 2015. POPKIN, B. M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr., v. 84, n. 2, p. 289-298, 2006. PRICE R. A.; LI, W. D.; ZHAO, H. FTO gene SNPs associated with extreme obesity in cases, controls and extremely discordant sister pairs. BMC Med. Genet., v. 9, p. 4, 2008. PRZELIORZ-PYSZCZEK, A.; REGULSKA-IIOW, B. The role of macronutrient intake in reducing the risk of obesity and overweight among carriers of different polymorphisms of FTO gene. A review. Rocz Panstw Zakl Hig, v. 68, n. 1, p. 5-13, 2017. QIAN, Y. et al. Genetic variant in fat mass and obesity-associated gene associated with type 2 diabetes risk in Han Chinese. BMC Genetics, v. 14, p. 86, 2013. RAJJO, T. et al. Treatment of Pediatric Obesity: An Umbrella Systematic Review. J Clin. Endocrinol. Metab., v. 102, n. 3, p. 763-775, 2017. RAMOS, R. B.; SPRITZER, P. M. FTO gene variants are not associated with polycystic ovary syndrome in women from Southern Brazil. Gene, v. 560, n. 1, p. 25- 29, 2015. RAMYA, K. et al. Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south indians (CURES-79). Diabetes Technol. Ther., v. 13, n. 1, p. 33-42, 2011. RAO, K. R.; LAL, N.; GIRIDHARAN, N. V. Genetic & epigenetic approach to human obesity. Indian J. Med. Res., v. 140, n. 5, p. 589-603, 2014. RAZAK, F. et al. Defining obesity cut points in a multiethnic population. Circulation, v. 115, p. 2111–2118, 2007. REILLY, J.J.; MARTIN, A.; HUGHES, A.R. Early-Life Obesity Prevention: Critique of Intervention Trials During the First One Thousand Days. Curr. Obes. Rep., v. 6, n. 2, p. 127-133, 2017. RILEY, D. J.; SANTIAGO, T.; EDELMAN, N. H. Complications of obesity– hypoventilation syndrome in childhood. Am. J. Dis. Child., v. 130, n. 6, p. 671-674, 1976. RODRIGUES, A. N. et al. Cardiovascular risk factor investigation: a pediatric issue. Int. J. Gen. Med., v. 6, p. 57–66, 2013. RODRIGUEZ, M. A. et al. Identification of population subgroups of children and adolescents with high asthma prevalence: findings from the Third National Health and Nutrition Examination Survey. Arch. Pediatr. Adolesc. Med., v. 156, n. 3, p. 269-275, 2002. ROLA, M. G.; FERREIRA, L. B. Polimorfismos genéticos associados à hipertensão arterial sistêmica. Univ. Ci. Saúde, v. 6, n. 1, p. 57-68, 2008. ROSENBAUM, M. et al. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab., v. 87, n. 5, p. 2391-2394, 2002. ROTTER, I. et al. Relationships between FTO rs9939609, MC4R rs17782313, and PPARγ rs1801282 polymorphisms and the occurrence of selected metabolic and hormonal disorders in middle-aged and elderly men - a preliminary study. Clin. Interv. Aging., v. 11, p. 1723-1732, 2016. SAMBROOK; J.; FRITSCHI, E. F.; MANIATIS, T. Molecular cloning: a laboratorymanual. Cold Spring Harbor Laboratory Press, v. 4, 1989. SATO, S. et al. Central control of bone remodeling by neuromedin U. Nat . Med., v. 13, n. 10, p. 1234-40, 2007. SCHEELE C.; NIELSEN, S. Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox. Biol., v. 12, p. 770-775, 2017. SCHWIMMER, J. B. et al. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J. Pediatr., v. 143, n. 4, p. 500-505, 2003. SCOTT, M. M. et al. Leptin targets in the mouse brain. J. Comp. Neurol., v. 514, n. 5, p. 518-532, 2009. SCUTERI, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet., v. 3, n. 7, p. 115, 2007. SEKINE, M. et al. A dose-response relationship between short sleeping hours and childhood obesity: results of the Toyama Birth Cohort Study. Child Care Health Dev., v. 28, n. 2, p. 163-170, 2002. SEOANE, L. M. et al. Ghrelin elicits a marked stimulatory effect on GH secretion in freely-moving rats. Eur. J. Endocrinol., v. 143, n. 5, p. 7-9, 2000. SHAO, A. et al. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur. J .Nutr., v. 56, n. 1, p. 1-21, 2017. SLOBODA, D. M. et al. Age at menarche: Influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab., v. 92, n. 1, p. 46-50, 2007. SMEMO, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX-3. Nature, v. 507, n. 7492, p. 371-375, 2014. SOHN, J. W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell., v. 152, n. 3, p. 612-9, 2013. SOOKOIAN, S. et al. Serotonin and serotonin transporter gene variant in rotating shift workers. Sleep., v. 30, n. 8, p. 1049-53, 2007. SOUSA, A. K. P. et al. Estratégias para o tratamento da obesidade infantil. Revista Brasileira de Obesidade, Nutrição e Emagrecimento, v.2, n.12, p.577-583, 2008. SPEAKMAN, J. R. The 'Fat Mass and Obesity Related' (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance. Curr. Obes. Rep., v. 4, n. 1, p. 73-91, 2015. SPILGELMAN, B. M.; FLIER, J. S. Obesity and the regulation of energy balance. Cell, v. 104, n. 4, p. 531-543, 2001. SRIVASTAVA, A. et al. Association of FTO and IRX3 genetic variants to obesity risk in north India. Ann. Hum. Biol., v. 43, n. 5, p. 451-456, 2016. STRATIGOPOULOS, G. et al. Hypomorphism of FTO and Rpgrip1l causes obesity in mice. The Journal of Clinical Investigation, v. 126, n. 5, p. 1897-1910, 2016. STRATIGOPOULOS, G. et al. Regulation of FTO/Ftm gene expression in mice and humans. Am. J. Physiol. Regul. Integr. Comp. Physiol., v. 294, n. 4, p. 1185-1196, 2008. TAHERI, S. et al. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med, v. 1, n. 3, p. 62, 2004. TALMOR, A.; DUNPHY, B. Female Obesity and Infertility. Best Pract. Res. Clin. Obstet. Gynaecol., v. 29, n. 4, p. 498-506, 2015. TANG, Y. et al. MeQTL analysis of childhood obesity links epigenetics with a risk SNP rs17782313 near MC4-R from meta-analysis. Oncotarget, v. 8, n. 2, p. 2800- 2806, 2017. THEANDER-CARRILLO, C. et al. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest., v. 116, n. 7, p. 1983-93, 2006. THOMAS, F. et al. International variability of ages at menarche and menopause: Patterns and main determinants. Hum. Biol., v. 73, p. 271–290, 2001. TIMPSON, N. J. et al. The fat mass- and obesity-associated locus and dietary intake in children. Am. J. Clin. Nutr., v. 88, n. 4, p. 971-978, 2008. TROIANO, R. P. et al. Overweight prevalence and trends for children and adolescents. The National and Nutrition Examination Surveys, 1963 to 1991. Arch. Pediatr. Adolesc. Med., v. 149, p. 1085-1091, 1995. TSCHÖP, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes, v. 50, n. 4, p. 707-9, 2001. TUNG, Y. C. et al. Obesity and FTO: Changing Focus at a Complex Locus. Cell Metabolism, v. 20, n. 5, p. 710-718, 2014. VELLOSO, L. A. The hypothalamic control of feeding and thermogenesis implications on the development of obesity. Arq. Bras. Endocrinol. Metab., v. 50, n. 2, p. 165- 176, 2006. VIDEIRA-SILVA, A.; FONSECA, H. The effect of a physical activity consultation on body mass index z-score of overweight adolescents: results from a pediatric outpatient obesity clinic. Eur. J. Pediatr., v. 176, n. 5, p.655-660, 2017. VIOQUE, J.; TORRES, A.; QUILES, J. Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain. Int. J. Obes. Relat. Metab. Disord., v. 24, n. 12, p. 1683-1688, 2000. VOLLBACH, H. et al. Prevalence and phenotypic characterization of MC4-R variants in a large pediatric cohort. Int. J. Obes., v. 41, n. 1, p. 13-22, 2017. VORONA, R. et al. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch. Inter. Med., v. 165, n. 1, p. 25-30, 2005. VOTSI, C. et al. Type 2 diabetes susceptibility in the greek-cypriot population: replication of associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 polymorphisms. Genes (Basel), v. 8, n. 1, p. 16, 2017. WANG, Y. Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics, v. 110, n. 5, p. 903-910, 2002. WANG, Y.; MONTEIRO, C. A.; POPKIN, B. M. Trend of obesity and underweight in older children e adolescents in the USA, Brazil, China and Russia. Am. J. Clin. Nutr., v. 75, n. 6, p. 971-977, 2002. WASIM, M. et al. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem. Genet., v. 54, n. 5, p. 565-572, 2016. WELLS, J.C. Body composition and susceptibility to type 2 diabetes: an evolutionary perspective. Eur. J. Clin. Nutr., v. 29, 2017. WILLIAMS, C. L.; GULLI, M. T.; DECKELBAUM, R. J. Prevention and treatment of childhood obesity. Curr. Atheroscler. Rep., v. 3, n. 6, p. 486-497, 2001. WILLIG, A. L. et al. Adjusting adiposity and body weight measurements for height alters the relationship with blood pressure in children. Am. J. Hypertens., v. 23, n. 8, p. 904-910, 2010. WISNIEWSKI, S. L. Childhood obesity among the poor in Peru: Are there implications for cognitive outcomes? Econ. Hum. Biol., v. 26, p. 51-60, 2017. WURTMAN, R. J.; WURTMAN, J. J. Brain serotonin, carbohydrate-craving, obesity and depression. Obes. Res., v. 3, n. 4, p. 477-480, 1995. XIAO, S. et al. Correlation between polymorphism of FTO gene and type 2 diabetes mellitus in Uygur people from northwest China. Int. J. Clin. Exp. Med., v. 8, n. 6, p. 9744-9750, 2015. XIAO, S. et al. Gene polymorphism association with type 2 diabetes and related gene-gene and gene-environment Interactions in a Uyghur population. Med. Sci. Monit., v. 22, p. 474-487, 2016. YAJNIK, C. S. et al. FTO gene variants are strongly associated with type 2 Diabetes but only weakly with Obesity in South Asian Indians. Diabetologia, v. 52, n. 2, p. 247- 252, 2009. YUKAWA, M. et al. Effect of aging on the response of ghrelin to acute weight loss. J. Am. Geriatr. Soc., v. 54, n. 4, p. 648-53, 2006. ZENG, X. et al. Association of FTO Mutations with Risk and Survival of Breast Cancer in a Chinese Population. Dis. Markers, v. 2015, p. 101032, 2015. ZHANG, N.; DU, S.; MA G.S. Current lifestyle factors that increase risk of T2DM in China. Eur. J. Clin. Nutr., 2017. ZHANG, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature, v. 372, p. 425–432, 1994. ZORRILLA, E. P. et al. Vaccination against weight gain. Proc. Natl. Acad. Sci. U.S.A., v. 103, n. 35, p. 13226-31, 2006. ZOU, Z. C. et al. Effect of exercise combined with dietary intervention on obese children and adolescents associated with the FTO rs9939609 polymorphism. Eur. Rev. Med. Pharmacol. Sci., v. 19, p. 4569-4575, 2015. ZUO, L.; WANG, K.; LUO, X. Use of diplotypes – matched haplotype pairs from homologous chromosomes – in gene-disease association studies. Shanghai Arch. Psychiatry, v. 26, n. 3, p. 165–170, 201http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-07-23T04:00:26Zoai:bdtd.uftm.edu.br:tede/785Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-07-23T04:00:26Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
title Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
spellingShingle Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
CARVALHO, Mariana Teixeira de
Obesidade infantil.
IMC.
Gene FTO.
Variantes genéticas.
Haplótipo.
rs9940128.
rs8050136.
rs9939609.
Childhood obesity.
BMI.
FTO gene.
Genetic variants.
Haplotype.
rs9940128.
rs8050136.
rs9939609.
Genética
Genética Humana e Médica
title_short Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
title_full Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
title_fullStr Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
title_full_unstemmed Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
title_sort Investigação molecular de variantes genéticas do gene FTO na obesidade infantil
author CARVALHO, Mariana Teixeira de
author_facet CARVALHO, Mariana Teixeira de
author_role author
dc.contributor.none.fl_str_mv BALARIN, Marly Aparecida Spadotto
06268176847
http://lattes.cnpq.br/9825231661876909
GRECCO, Roseane Lopes da Silva
07153828885
dc.contributor.author.fl_str_mv CARVALHO, Mariana Teixeira de
dc.subject.por.fl_str_mv Obesidade infantil.
IMC.
Gene FTO.
Variantes genéticas.
Haplótipo.
rs9940128.
rs8050136.
rs9939609.
Childhood obesity.
BMI.
FTO gene.
Genetic variants.
Haplotype.
rs9940128.
rs8050136.
rs9939609.
Genética
Genética Humana e Médica
topic Obesidade infantil.
IMC.
Gene FTO.
Variantes genéticas.
Haplótipo.
rs9940128.
rs8050136.
rs9939609.
Childhood obesity.
BMI.
FTO gene.
Genetic variants.
Haplotype.
rs9940128.
rs8050136.
rs9939609.
Genética
Genética Humana e Médica
description A prevalência da obesidade vem crescendo de forma expressiva no mundo todo, chegando a ser considerada, em muitos lugares, a maior epidemia de saúde pública e a principal causa de morte prematura. É definida como um acúmulo anormal ou excessivo de gordura que pode prejudicar a saúde. Inúmeros estudos têm avaliado genes e sua associação com a obesidade infantil. O gene FTO (fat mass and obesity associated) é um dos mais relacionados à obesidade, no qual sua superexpressão está relacionada ao aumento de peso nesta condição, podendo ser modulada por variantes genéticas. Este trabalho tem como objetivos investigar as frequências das variantes genéticas rs9940128, rs8050136, rs9939609 do gene FTO, em crianças com sobrepeso e obesidade e verificar associação destas e parâmetros como sexo, histórico de obesidade na família e atividade física com a obesidade infantil. Trata-se de um estudo do tipo caso-controle retrospectivo com 364 indivíduos, dos quais o grupo de estudo compreendeu 186 crianças e adolescentes entre 5 e 19 anos diagnosticadas com sobrepeso ou obesidade. Fizeram parte do grupo controle 178 adultos, os quais não tiveram sobrepeso ou obesidade na infância. Para a avaliação das variantes genéticas foi realizada a técnica de PCR em Tempo Real, PCR aleloespecífico e PCR-RFLP. Para comparar as distribuições das frequências alélicas e genotípicas entre os grupos e verificar se as distribuições genotípicas estavam em Equilíbrio de Hardy-Weinberg (EHW), foi utilizado o teste de Qui-Quadrado (2). Para a análise do modelo de herança e dos haplótipos, foi utilizado o programa SNPStats. O modelo de regressão logística múltipla foi utilizado para determinar o efeito das variáveis analisadas e o desenvolvimento de obesidade infantil, incluindo fatores sociodemográficos, sinais clínicos e dados moleculares. O nível de significância considerado foi de 5% (p≤ 0,05). A frequência do genótipo heterozigoto foi maior nos grupos estudados para as três variantes genéticas. Na análise de regressão logística, o parâmetro mãe com excesso de peso e presença do alelo A da variante genética rs9940128 foram estatisticamente significativos (0,0225 e 0,0439, respectivamente). Não foi encontrada associação das variantes genéticas rs9940128 G>A, rs8050136 A>C e rs9939609 A>T, dos haplótipos, modelos de herança mendeliana e os parâmetros estudados com a obesidade infantil, exceto para mãe com excesso de peso, o que pode conduzir a pesquisas acerca do papel da8 herdabilidade nesta doença e no monitoramento familiar de crianças que apresentam excesso de peso.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-03
2019-07-22T17:28:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARVALHO, Mariana Teixeira de. Investigação molecular de variantes genéticas do gene FTO na obesidade infantil. 2017. 85f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
http://bdtd.uftm.edu.br/handle/tede/785
identifier_str_mv CARVALHO, Mariana Teixeira de. Investigação molecular de variantes genéticas do gene FTO na obesidade infantil. 2017. 85f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
url http://bdtd.uftm.edu.br/handle/tede/785
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv AKCA, S. O.; UYSAL, G.; BUYUKGONENC, L. A. Obesity in Nursery School Children in Corum, Turkey. Iran. Red. Crescent. Med. J., v. 18, n. 10, p. e27734, 2016. ALBUQUERQUE, D. et al. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol. Genet. Genomics, v. 290, n. 4, p. 1191-1221, 2015. ALMÉN, M. S. et al. Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. International Journal of Obesity, v. 37, p. 424–431, 2013. ANJOS, L. A. Índice de massa corporal (massa corporal estatura-2) como indicador do estado nutricional de adultos: revisão da literatura. Revista de Saúde Pública, São Paulo, v. 26, n. 6, p. 431-436, 1992. ANKER, M. S. et al. Highlights of the mechanistic and therapeutic cachexia and sarcopenia research 2010 to 2012 and their relevance for cardiology. Int. J. Cardiol., v. 162, n. 2, p. 73-6, 2013. APALASAMY, Y. D.; MOHAMED, Z. Obesity and genomics: role of technology in unraveling the complex genetic architecture of obesity. Hum. Genet., v. 134, n. 4, p. 361-74, 2015. ATTAOUA, R. et al. Association of the FTO gene with obesity and the metabolic syndrome is independent of the IRS-2 gene in the female population of Southern France. Diabetes Metab., v. 35, n. 6, p. 476-83, 2009. BARNESS, L. A. et al. Obesity: Genetic, molecular, and environmental aspects. Am. J. Med. Genet., v. 143, n. 24, p. 3016-3034, 2007. BERGLUND, E. D. et al. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci., v. 17, n. 7, p. 911-913, 2014. BERTHOLO, L. C.; MOREIRA, H. W. Amplificação gênica alelo-específica na caracterização das hemoglobinas S, C e D e as interações entre elas e talassemias beta. J. Bras. Patol. Med. Lab., v. 42, n. 4, p. 245-251, 2006. BERULAVA T, HORSTHEMKE, B. Comment on: Jowett et al. (2010) Genetic variation at the FTO locus influences RBL2 gene expression. Diabetes, v. 59, p. 726–732, 2010. BERULAVA, T.; HORSTHEMKE, B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur. J. Hum. Genet., v. 18, n. 9, p. 1054- 1056, 2010. BOMBERG, E. et al. The Financial Costs, Behaviour and Psychology of Obesity: A One Health Analysis. J. Comp. Pathol., v. 156, n. 4, p. 310-325, 2017. BONNET, M. H.; ARAND, D. L. We are chronically sleep deprived. Sleep, v. 18, n. 10, p. 908-911, 1995. BORDONI, L. et al. Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life, v. 69, n. 2, p. 98-105, 2017. BOUCHARD, C. et al. The response to exercise with constant energy intake in identical twins. Obes. Res., v. 2, n. 5, p. 400-10, 1994. BOUCHARD, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med., v. 322, n. 21, p. 1477-1482, 1990. BRANCO, L. M.; CINTRA, I. P.; FIBERG, M. Adolescente gordo ou magro: realidade ou fantasia? Nutrição Brasil, v. 5, n. 4, p. 189-194, 2006. CASTELLINI, G. et al. Fat mass and obesity-associated gene (FTO) is associated to eating disorders susceptibility and moderates the expression of psychopathological traits. PLoS One, v. 12, n. 3, 2017. CATALANO, P. M.; SHANKAR, K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ, v. 356, p. j1, 2017. CAVANILLES, E. W. et al. Effectiveness of weight loss in the treatment of nonalcoholic steatohepatitis in an obese adolescent. An. Pediatr. (Barc), v. 66, n. 2, p. 184-187, 2007. CHA, S. W. et al. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity, v. 16, n. 9, p. 2187-9, 2008. CHAMBERS, J. C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat. Genet., v. 40, n. 6, p. 716-8, 2008. CHANG, Y. C. et al. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes, v. 57, n. 8, p. 2245-52, 2008. CHEUNG, M. M.; YEO, G. S. H. FTO biology and obesity: why do a billion of us weigh 3 kg more? Front. Endocrinol., v. 2, p. 4, 2011. CHINN, S.; RONA, R. J. Prevalence and trends in overweight and obesity in three cross sectional studies of British children, 1974-94. BMJ, v. 322, n. 7277, p. 24-26, 2001. CHIU, M. et al. Deriving ethnic-specific BMI cutoff points for assessing diabetes risk. Diabetes Care, v. 34, p. 1741–1748, 2011. CHORLEY, B. N. et al. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat. Res., v. 659, n. 1-2, p. 147-157, 2008. CHUENTA, W. et al. Common variations in the FTO gene and obesity in Thais: a family-based study. Gene, v. 558, n. 1, p. 75-81, 2015. CHURCH, C. et al. Overexpression of FTO leads to increased food intake and results in obesity. Nat. Genet., v. 42, n. 12, p. 1086–1092, 2010. CLARK, A. G. The Role of Haplotypes in Candidate Gene Studies. Genetic Epidemiology, v. 27, p. 321–333, 2004. CONSIDINE, R. V.; CARO, J. F. Leptin: genes, concepts and clinical pespective. Horm. Res., v. 46, n. 6, p. 249-256, 1996. CUMMINGS, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, v. 50, n. 8, p. 1714-9, 2001. CUMMINGS, D. E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav., v. 89, n. 1, p. 71-84, 2006. DAMIANI, D.; DAMIANI, D.; OLIVEIRA, R. G. Obesidade - fatores genéticos ou ambientais? Pediatria Moderna, v. 38, n. 3, p. 57-80, 2002. DANIELS, S. R.; HASSINK, S. G. The role of the pediatrician in primary prevention of obesity. Pediatrics, v. 136, n. 1, p. 275-292, 2015. DE LUIS, D. A. et al. Relación del polimorfismo rs9939609 del gen FTO com factores de riesgo cardiovascular y niveles de adipocitoquinas en pacientes com obesidad mórbida. Nutr Hosp., v. 12, p. 27-1184, 2012. DENNISON, B. A.; ERB, T. A.; JENKINS, P. L. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics, v. 109, n. 6, p. 1028-1035, 2002. DHILLON, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron, v. 49, n. 2, p. 191- 203, 2006. DINA, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genet., v. 39, n. 6, p. 724-726, 2007. DOAEI, S. et al. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies. Indian Heart J., v. 69, n. 2, p. 277-281, 2017. DORES, R. M. Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor. Front. Neurosci., v. 7, p. 28, 2013. DWIVEDI, O. P. et al. Common Variants of FTO Are Associated with Childhood Obesity in a Cross-Sectional Study of 3,126 Urban Indian Children. PLoS One, v. 7, n. 10, p. e47772, 2012. EBBELING, C. B.; PAWLAK, D. B.; LUDWIG, D. S. Childhood obesity: public-health crisis, common sense cure. The Lancet, v. 360, n. 9331, p. 473-482, 2002. ELOUEJ, S. et al. Association of rs9939609 Polymorphism with Metabolic Parameters and FTO Risk Haplotype Among Tunisian Metabolic Syndrome. Metab. Syndr. Relat. Disord., v. 14, n. 2, p. 121-128, 2016. EROL, M. et al. Association of Osteoprotegerin with Obesity, Insulin Resistance and Non-Alcoholic Fatty Liver Disease in Children. Iran Red. Crescent. Med. J., v. 18, n. 11, p. e41873, 2016. EWENS, K. G. FTO and MC4R Gene Variants Are Associated with Obesity in Polycystic Ovary Syndrome. PloS One, v. 6, n. 1, p. e16390, 2011. FAROOQI, S. FTO and Obesity: The Missing Link. Cell Metabolism, v. 13, n. 1, p. 7- 8, 2011. FONTANIVE, R. S.; COSTA, R. S.; SOARES, E. A. Comparison between the nutritional status of eutrophic and overweight adolescents living in Brazil. Nutr. Res., v. 22, n. 6, p. 667-668, 2002. FOSTER-SCHUBERT, K. E; CUMMINGS, D. E. Emerging therapeutic strategies for obesity. Endocr Rev., v. 27, n. 7, p. 779-93, 2006. FRANZAGO, M. et al. Molecular Analysis of a Genetic Variants Panel Related to Nutrients and Metabolism: Association with Susceptibility to Gestational Diabetes and Cardiometabolic Risk in Affected Women. Journal of Diabetes Research, v. 2017, p. 4612623, 2017. FRAYLING, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, v. 316, n. 5826, p. 889-894, 2007. FREDERICH, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med., v. 12, p. 1311-1314, 1995. FREEDMAN, D. S. et al. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J. Pediatr., v. 150, n. 1, p. 12-17, 2007. FREEDMAN, D. S.; SHERRY, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics, v. 124, p. 23-34, 2009. FRIEDMAN, J. M.; HALAAS, J. L. Leptin and the regulation of body weight in mammals. Nature, v. 395, n. 6704, p. 763-770, 1998. FUEMMELER, B. F. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity, v. 16, n. 2, p. 348-355, 2008. GARCÍA-SOLÍS, P. et al. Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4-R) (rs17782313) SNP are positively associated with obesity and blood pressure in Mexican school-aged children. Br. J. Nutr., v. 10, p. 1-7, 2016. GENNUSO, J. et al. The relationship between asthma and obesity in urban minority children and adolescents. Arch. Pediatr. Adolesc. Med., v. 152, n. 12, p. 1197- 1200, 1998. GILLMAN, M. W. et al. Family dinner and diet quality among older children and adolescents. Arch. Fam. Med., v. 9, n. 3, p. 235-240, 2000. GODFREY, K. M. et al. Influence of maternal obesity on the long-term health of offspring. Lancet. Diabetes. Endocrinol., v. 5, n. 1, p. 53-64, 2017. GONZÁLEZ-RUIZ, K. et al. The Effects of Exercise on Abdominal Fat and Liver Enzymes in Pediatric Obesity: A Systematic Review and Meta-Analysis. Child Obes., v. 21, 2017. GONZÁLEZ-SÁNCHEZ, J. L. et al. Variant rs9939609 in the FTO gene is associated with obesity in an adult population from Spain. Clin. Endocrinol., v. 70, n. 3, p. 390- 3, 2009. GORTMAKER, S. L. et al. Increasing pediatric obesity in the United States. Am. J. Dis. Child., v. 141, p. 535-540, 1987. GRANT, S. F. et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One, v. 3, n. 3, p. e1746, 2008. GRIFFITHS, L. J. et al. Risk factors for rapid weight gain in preschool children: findings from a UK-wide prospective study. Int. J. Obes. (Lond), v. 34, n. 4, p. 624- 632, 2010. GUÍZAR-MENDOZA, J. M. et al. Association analysis of the Gln223Arg polymorphism in the human leptin receptor gene, and traits related to obesity in Mexican adolescents. J. Hum. Hypertens., v. 19, n. 5, p. 341-346, 2005. GUPTA, N. K. et al. Is obesity associated with poor sleep quality in adolescents? Am. J. Hum. Biol., v. 14, n. 6, p. 762-768, 2002. HALFORD, J. C. et al. Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs, v. 67, n. 1, p. 27-55, 2007. HANADA, R. et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat. Med., v. 10, n. 10, p. 1067-73, 2004. HARBRON, J. et al. Fat Mass and Obesity-Associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese caucasian adults. Nutrients, v. 6, n. 8, p. 3130-3152, 2014. HASLER, G. et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep, v. 27, n. 4, p. 661-666, 2004. HAVEL, P. J. et al. Gender differences in plasma leptin concentrations. Nat. Med., v. 2, n. 9, p. 949-950, 1996. HE, Q. et al. Trunk fat and blood pressure in children through puberty. Circulation, v. 105, n. 9, p. 1093-1098, 2002. HEILS, A. et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem., v. 66, n. 6, p. 2621-2624, 1996. HEISLER, L. K. et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron., v. 51, n. 2, p. 239-249, 2006. HINNEY, A. et al. Genome Wide Association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One, v. 2, n. 12, p. 1361, 2007. HOTTA, K. et al. Variations in the FTO gene are associated with severe obesity in the Japanese. J. Hum. Genet., v. 53, n. 6, p. 546-553, 2008. HUANG, X. et al. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur. J. Cancer Care, v. 1, p. e12464, 2016. IP, E.H. et al. Determinants of Adiposity Rebound Timing in Children. J. Pedriatr., v. 184, p. 151-156, 2017. IRBY, M. et al. Motivational interviewing in a family-based pediatric obesity program: a case study. Fam. Syst. Health, v. 28, n. 3, p. 236-246, 2010. JOHAR, D.R.; BERNSTEIN, L.H. Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Res. Clin. Pract., v. 126, p. 222-229, 2017. JONSSON, A. et al. Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia, v. 52, n. 7, p. 1334-8. 2009. JUNQING, W. et al. Association of FTO Polymorphisms with Obesity and Metabolic Parameters in Han Chinese Adolescents. PloS One, v. 9, n. 6, p. e98984, 2014. JUONALA, M. et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med., v. 365, n. 20, p. 1876-1885, 2011. KEANE, E., et al. Physical Activity, Sedentary Behaviour and the Risk of Overweight and Obesity in School Aged Children. Pediatr. Exerc. Sci., v. 7, p. 1-27, 2017. KELISHADI, R.; AZIZI-SOLEIMAN, F. Controlling childhood obesity: A systematic review on strategies and challenges. J. Res. Med. Sci., v. 19, n. 10, p. 993–1008, 2014. KELLY, A. S. et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation, v. 128, n. 15, p. 1689-1712, 2013. KLIMENTIDIS, Y. C. et al. Associations of obesity genes with obesity-related outcomes in multiethnic children. Arch. Med. Res., v. 42, n. 6, p. 509-514, 2011. KLÖTING, N. et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia, v. 51, n. 4, p. 641-647, 2008. KOHATSU, N. D. et al. Sleep duration and body mass index in a rural population. Arch. Intern. Med., v. 166, n. 16, p. 1701-1705, 2006. KOJIMA, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, v. 402, n. 6762, p. 656-60, 1999. KOUSTA, E. et al. Pleiotropic genetic syndromes with developmental abnormalities associated with obesity. Journal of Pediatric Endocrinology & Metabolism, v. 22, p. 581-592, 2009. KRIPKE, D. F. et al. Mortality associated with sleep duration and insomnia. Arch. Gen. Psychiatry, v. 59, n. 2, p. 131-136, 2002. KUMAR, S.; KELLY, A. S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc., v. 92, n. 2, p. 251-265, 2017. LABAYEN, I. et al. Association between the FTO rs9939609 polymorphism and leptin in European adolescents: a possible link with energy balance control. The HELENA study. Int. J. Obes., v. 35, n. 1, p. 66-71, 2011. LAINSCAK, M. et al. Ghrelin and neurohumoral antagonists in the treatment of cachexia associated with cardiopulmonary disease. Intern. Med., v. 45, n. 13, p. 837, 2006. LAKSHMAN, R.; ELKS, C. E.; ONG, K. K. Childhood obesity. Circulation, v. 126, n. 14, p. 1770-1779, 2012. LAW, C. et al. A pragmatic evaluation of a family-based intervention for childhood overweight and obesity. NIHR Journals Library, v. 2, n. 5, 2014. LEIN, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature, v. 445, p. 168-176, 2007. LEINNINGER, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab., v. 14, n. 3, p. 313- 223, 2011. LIM, B. K. et al. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, v. 487, n. 7406, p. 183-9, 2012. LIU, Y.; CHEN, Y. Fat Mass and Obesity Associated Gene Polymorphism and the Risk of Polycystic Ovary Syndrome: A Meta-analysis. Iran J. Public Health, v. 46, n.1, p. 4-11, 2017. LLEWELLYN, C. H. et al. Finding the missing heritability in pediatric obesity: the contribution of genome-wide complex trait analysis. Int. J. Obes., v. 37, n. 11, p. 1506–1509, 2013. LOBSTEIN, T.; BAUR, L.; UAUY, R. Obesity in children and young people: a crisis in public health. Obesity Reviews, v. 5, p. 4-104, 2004. LÓPEZ, P. P. et al. Development of a sleeve gastrectomy weight loss model in obese Zucker rats. J. Surg. Res., v. 157, n. 2, p. 243-50, 2009. LOSS, R. J.; GILES, S. H. The bigger picture of FTO – the first GWAS-identified obesity gene. Nat. Rev. Endocrinol., v. 10, n. 1, p. 51-61, 2014. LOW, S. et al. Rationale for redefining obesity in Asians. Ann. Acad. Med., v. 38, p. 66–74, 2009. LU, Y.; LOOS, R. J. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med., v. 5, n. 6, p. 55, 2013. LUDER, E.; MELNIK, T. A.; DIMAIO, M. Association of being overweight with greater asthma symptoms in inner city black and Hispanic children. J. Pediatr., v. 132, n. 4, p. 699-703, 1998. LUSTIG, R. H. The neuroendocrinology of childhood obesity. Pediatr. Clin. North. Am., v. 48, n. 4, p. 909-930, 2001. MAFFEIS, C.; MORANDI, A. Effect of Maternal Obesity on Foetal Growth and Metabolic Health of the Offspring. Obes Facts., v. 10, n. 2, p.112-117, 2017. MARQUES-LOPES, I. et al. Genetics of obesity. Rev. Nutr., v. 17, n. 3, p. 327-338, 2004. MARTINEZ, V. G.; O'DRISCOLL, L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin. Chem., v. 61, n. 3, p. 471-82, 2015. MARTÍNEZ-HERNÁNDEZ, A. et al. Genetics of Obesity. Public Health Nutrition, v. 10, n. 10, p.1138-1144, 2007. MATHUR, P.; DAS, M. K.; ARORA, N. K. Non-alcoholic fatty liver disease and childhood obesity. Indian J. Pediatr., v. 74, n. 4, p. 401-407, 2007. MATSUDO, S. A.; PASCHOAL, V. C. A.; AMANCIO, O. M. S. Atividade física e sua relação com o crescimento e a maturação biológica de crianças. Cadernos de Nutrição, v. 14, p. 1-12, 2003. MEAD, E. et al. Drug interventions for the treatment of obesity in children and adolescents. Cochrane Database Syst. Rev., v. 11, p. CD012436, 2016. MEI, H. et al. Longitudinal replication studies of GWAS risk SNPs influencing body mass index over the course of childhood and adulthood. PLoS One, v. 7, n. 2, p. e31470, 2012. MELDRUM, D. R.; MORRIS, M. A.; GAMBONE, J. C. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil. Steril., v. 107, n. 4, p. 833-839, 2017. MELLO, E. D.; LUFT, V. C.; MEYER, F. Obesidade infantil: como podemos ser eficazes? Jornal de Pediatria, v. 80, n. 3, p. 173-182, 2004. MENG, X. R. et al. Association study of childhood obesity with eight genetic variants recently identified by genome-wide association studies. Pediatr. Res., v. 76, n. 3, p. 310-5, 2014. MERKESTEIN, M. et al. FTO influences adipogenesis by regulating mitotic clonal expansion. Nature Communications, v. 6, p. 6792, 2015. Ministério da Saúde. Caderno de Atenção Básica. Obesidade, n. 12, 2009. MIRANDA, R. C. K. et al. Biallelic and triallelic approaches of 5-HTTLPR polymorphism are associated with food intake and nutritional status in childhood. J. Nutr. Biochem., v. 43, p. 47-52, 2017. MONTEIRO, C. A. et al. Da desnutrição para a obesidade: a transição nutricional no Brasil. In: MONTEIRO, C.A. Velhos e novos males da saúde no Brasil: a evolução do país e de suas doenças. Hucitec, v. 29, n. 6, p. 247-255, 1995. MORRIS, R. W.; KAPLAN, N. L. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genetic Epidemiology, v. 23, p. 221–233, 2002. MÜLLER T. D. et al. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J. Cachexia Sarcopenia Muscle, v. 1, n. 2, p. 159-167, 2010. MÜLLER, T. D. et al. Ghrelin. Mol. Metab., v. 4, n. 6, p. 437-60, 2015. NAKAZATO, M. et al. A role for ghrelin in the central regulation of feeding. Nature, v. 409, n. 6817, p. 194-8, 2001. NAMJOU, B. et al. EMR-linked GWAS study: investigation of variation landscape of loci for body mass index in children. Frontiers in Genetics, v. 4, p. 268, 2013. NELSON, S. M.; FLEMING, R. Obesity and reproduction: impact and interventions. Curr. Opin. Obstet. Gynecol., v. 19, n. 4, p. 384-389, 2007. NEUSCHWANDER-TETRI, B. A.; CALDWELL, S. H. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology, v. 38, n. 2, p. 536, 2003. NIKOLOPOULOU, A; KADOGLOU, N. P. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev. Cardiovasc. Ther., v. 10, n. 7, p. 933–939, 2012. OGDEN, C. L. et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA, v. 311, n. 8, p. 806-814, 2014. OMS – Organização Mundial da Saúde. Obesity: Development of a WHO growth reference for school-aged children and adolescents: Growth reference 5-19 years. Bulletin of the World Health Organization, v. 85, p. 660-667, 2007. OMS – Organização Mundial da Saúde. Consideration of the evidence on childhood obesity for the commission on ending childhood obesity. Geneva (CHE), 2016. OMS – Organização Mundial da Saúde. Estimated overweight & obesity show. WHO Global Infobase, 2002, 2005, 2010. OMS – Organização Mundial da Saúde. Prevalence of obesity, ages 18+, 1975- 2014. Global Health Observatory (GHO), 2016. OTTAWAY, N. et al. Diet-induced obese mice retain endogenous leptin action. Cell Metab., v. 21, n. 6, p. 877-882, 2015. OTTO, B. et al. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology, v. 30, n. 6, p. 577-81, 2005. OTTO, B. et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol., v. 145, n. 5, p. 669-73, 2001. PADILHA, P. C. et al. Prevalence of nonalcoholic fatty liver disease in obese children and adolescents: a systematic review. Rev. Paul. Pediatr., v. 28, n. 4, p. 387-393, 2010. PAPANDREOU, D.; ROUSSO, I.; MAVROMICHALIS, I. Update on non-alcoholic fatty liver disease in children. Clin. Nutr., v. 26, n. 4, p. 409-415, 2007. PAPATHANASOPOULOS, A. et al. A preliminary candidate genotype-intermediate phenotype study of satiation and gastric motor function in obesity. Obesity, v. 18, n. 6, p. 1201-1211, 2010. PEETERS, A. et al. Variants in the FTO gene are associated with common obesity in the Belgian population. Mol. Genet. Metab., v. 93, n. 4, p. 481-4, 2008. PEINO, R. et al. Ghrelin-induced growth hormone secretion in humans. Eur. J. Endocrinol., v. 143, n. 6, p. 11-14, 2000. PELEGRINI, A. et al. Indicadores antropométricos de obesidade na predição de gordura corporal elevada em adolescentes. Revista Paulista de Pediatria, v. 33, n. 1, p. 56-62, 2015. POPKIN, B. M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr., v. 84, n. 2, p. 289-298, 2006. PRICE R. A.; LI, W. D.; ZHAO, H. FTO gene SNPs associated with extreme obesity in cases, controls and extremely discordant sister pairs. BMC Med. Genet., v. 9, p. 4, 2008. PRZELIORZ-PYSZCZEK, A.; REGULSKA-IIOW, B. The role of macronutrient intake in reducing the risk of obesity and overweight among carriers of different polymorphisms of FTO gene. A review. Rocz Panstw Zakl Hig, v. 68, n. 1, p. 5-13, 2017. QIAN, Y. et al. Genetic variant in fat mass and obesity-associated gene associated with type 2 diabetes risk in Han Chinese. BMC Genetics, v. 14, p. 86, 2013. RAJJO, T. et al. Treatment of Pediatric Obesity: An Umbrella Systematic Review. J Clin. Endocrinol. Metab., v. 102, n. 3, p. 763-775, 2017. RAMOS, R. B.; SPRITZER, P. M. FTO gene variants are not associated with polycystic ovary syndrome in women from Southern Brazil. Gene, v. 560, n. 1, p. 25- 29, 2015. RAMYA, K. et al. Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south indians (CURES-79). Diabetes Technol. Ther., v. 13, n. 1, p. 33-42, 2011. RAO, K. R.; LAL, N.; GIRIDHARAN, N. V. Genetic & epigenetic approach to human obesity. Indian J. Med. Res., v. 140, n. 5, p. 589-603, 2014. RAZAK, F. et al. Defining obesity cut points in a multiethnic population. Circulation, v. 115, p. 2111–2118, 2007. REILLY, J.J.; MARTIN, A.; HUGHES, A.R. Early-Life Obesity Prevention: Critique of Intervention Trials During the First One Thousand Days. Curr. Obes. Rep., v. 6, n. 2, p. 127-133, 2017. RILEY, D. J.; SANTIAGO, T.; EDELMAN, N. H. Complications of obesity– hypoventilation syndrome in childhood. Am. J. Dis. Child., v. 130, n. 6, p. 671-674, 1976. RODRIGUES, A. N. et al. Cardiovascular risk factor investigation: a pediatric issue. Int. J. Gen. Med., v. 6, p. 57–66, 2013. RODRIGUEZ, M. A. et al. Identification of population subgroups of children and adolescents with high asthma prevalence: findings from the Third National Health and Nutrition Examination Survey. Arch. Pediatr. Adolesc. Med., v. 156, n. 3, p. 269-275, 2002. ROLA, M. G.; FERREIRA, L. B. Polimorfismos genéticos associados à hipertensão arterial sistêmica. Univ. Ci. Saúde, v. 6, n. 1, p. 57-68, 2008. ROSENBAUM, M. et al. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab., v. 87, n. 5, p. 2391-2394, 2002. ROTTER, I. et al. Relationships between FTO rs9939609, MC4R rs17782313, and PPARγ rs1801282 polymorphisms and the occurrence of selected metabolic and hormonal disorders in middle-aged and elderly men - a preliminary study. Clin. Interv. Aging., v. 11, p. 1723-1732, 2016. SAMBROOK; J.; FRITSCHI, E. F.; MANIATIS, T. Molecular cloning: a laboratorymanual. Cold Spring Harbor Laboratory Press, v. 4, 1989. SATO, S. et al. Central control of bone remodeling by neuromedin U. Nat . Med., v. 13, n. 10, p. 1234-40, 2007. SCHEELE C.; NIELSEN, S. Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox. Biol., v. 12, p. 770-775, 2017. SCHWIMMER, J. B. et al. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J. Pediatr., v. 143, n. 4, p. 500-505, 2003. SCOTT, M. M. et al. Leptin targets in the mouse brain. J. Comp. Neurol., v. 514, n. 5, p. 518-532, 2009. SCUTERI, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet., v. 3, n. 7, p. 115, 2007. SEKINE, M. et al. A dose-response relationship between short sleeping hours and childhood obesity: results of the Toyama Birth Cohort Study. Child Care Health Dev., v. 28, n. 2, p. 163-170, 2002. SEOANE, L. M. et al. Ghrelin elicits a marked stimulatory effect on GH secretion in freely-moving rats. Eur. J. Endocrinol., v. 143, n. 5, p. 7-9, 2000. SHAO, A. et al. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur. J .Nutr., v. 56, n. 1, p. 1-21, 2017. SLOBODA, D. M. et al. Age at menarche: Influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab., v. 92, n. 1, p. 46-50, 2007. SMEMO, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX-3. Nature, v. 507, n. 7492, p. 371-375, 2014. SOHN, J. W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell., v. 152, n. 3, p. 612-9, 2013. SOOKOIAN, S. et al. Serotonin and serotonin transporter gene variant in rotating shift workers. Sleep., v. 30, n. 8, p. 1049-53, 2007. SOUSA, A. K. P. et al. Estratégias para o tratamento da obesidade infantil. Revista Brasileira de Obesidade, Nutrição e Emagrecimento, v.2, n.12, p.577-583, 2008. SPEAKMAN, J. R. The 'Fat Mass and Obesity Related' (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance. Curr. Obes. Rep., v. 4, n. 1, p. 73-91, 2015. SPILGELMAN, B. M.; FLIER, J. S. Obesity and the regulation of energy balance. Cell, v. 104, n. 4, p. 531-543, 2001. SRIVASTAVA, A. et al. Association of FTO and IRX3 genetic variants to obesity risk in north India. Ann. Hum. Biol., v. 43, n. 5, p. 451-456, 2016. STRATIGOPOULOS, G. et al. Hypomorphism of FTO and Rpgrip1l causes obesity in mice. The Journal of Clinical Investigation, v. 126, n. 5, p. 1897-1910, 2016. STRATIGOPOULOS, G. et al. Regulation of FTO/Ftm gene expression in mice and humans. Am. J. Physiol. Regul. Integr. Comp. Physiol., v. 294, n. 4, p. 1185-1196, 2008. TAHERI, S. et al. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med, v. 1, n. 3, p. 62, 2004. TALMOR, A.; DUNPHY, B. Female Obesity and Infertility. Best Pract. Res. Clin. Obstet. Gynaecol., v. 29, n. 4, p. 498-506, 2015. TANG, Y. et al. MeQTL analysis of childhood obesity links epigenetics with a risk SNP rs17782313 near MC4-R from meta-analysis. Oncotarget, v. 8, n. 2, p. 2800- 2806, 2017. THEANDER-CARRILLO, C. et al. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest., v. 116, n. 7, p. 1983-93, 2006. THOMAS, F. et al. International variability of ages at menarche and menopause: Patterns and main determinants. Hum. Biol., v. 73, p. 271–290, 2001. TIMPSON, N. J. et al. The fat mass- and obesity-associated
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde
Brasil
UFTM
Programa de Pós-Graduação em Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde
Brasil
UFTM
Programa de Pós-Graduação em Ciências da Saúde
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1813013328468901888