Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro

Detalhes bibliográficos
Autor(a) principal: SILVEIRA, Isadora Caixeta da
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/752
Resumo: O carcinoma epidermoide oral apresenta altas taxas de mortalidade. Os receptores tirosina quinase, FGFRs, PDGFRs e VEGFRs, estão amplificados e/ou superexpressos nessa neoplasia e são bloqueados pelo inibidor TKI-258. Esses receptores ativam a PI3K, proteína intracelular que está frequentemente associada à carcinogênese, que pode ser bloqueada pelos inibidores LY294002 e Wortmannin. O objetivo deste estudo foi avaliar o efeito do tratamento com TKI-258 sobre a proliferação celular, e o papel da proteína PI3K nas vias de sinalização inibidas por esse inibidor em carcinoma epidermoide oral in vitro. Através dos ensaios de incorporação do BrdU e imunoexpressão do KI-67, marcadores de proliferação celular, foi determinada a taxa de proliferação de células SCC-4 de carcinoma epidermoide oral controle e tratadas por 6 h com: TKI-258 1 µM, 5 µM e 10 µM; LY294002 60 µM e/ou Wortmannin 2 µM; TKI 5 μM somente ou associado ao LY294002 ou ao Wortmannin; e, TKI 5 μM combinado com LY294002 e Wortmannin. Foi considerada uma significância de p<0,05. O tratamento com TKI-258 reduziu a taxa de proliferação de células SCC-4 que incorporaram BrdU [F(3,11) = 120,807, p<0,0001] e imunoexpressaram KI-67 [F(3,11) = 222,379, p<0,0001]. O percentual de células proliferativas também foi menor após o tratamento com os inibidores da PI3K, LY294002 e/ou Wortmannin, incorporação do BrdU [F(3,11) = 477,578, p<0,0001] e imunoexpressão do KI-67 [F(3,11) = 421,762, p<0,0001]. A associação do TKI-258 5 µM com LY294002 e/ou Wortmannin diminuiu ainda mais a taxa de proliferação na incorporação do BrdU [F(3,11) = 252,324, p<0,0001] e imunoexpressão do KI-67 [F(3,11) = 295,346, p<0,0001]. Os resultados obtidos neste estudo demonstraram que o TKI-258 apresenta um efeito antiproliferativo em células SCC-4 de carcinoma epidermoide oral e esse processo possivelmente pode ser regulado pelos receptores tirosina quinase bloqueados por esse inibidor, por meio de vias dependentes e independentes de PI3K.
id UFTM_b342ce59c9bbcd18bfcf83601ccc8986
oai_identifier_str oai:bdtd.uftm.edu.br:tede/752
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitroCarcinoma epidermoide oral.Inibidores tirosina quinase.PI3K.Proliferação celular.Cell proliferation.Oral squamous cell carcinoma.PI3K.Tyrosine kinase inhibitors.MorfologiaO carcinoma epidermoide oral apresenta altas taxas de mortalidade. Os receptores tirosina quinase, FGFRs, PDGFRs e VEGFRs, estão amplificados e/ou superexpressos nessa neoplasia e são bloqueados pelo inibidor TKI-258. Esses receptores ativam a PI3K, proteína intracelular que está frequentemente associada à carcinogênese, que pode ser bloqueada pelos inibidores LY294002 e Wortmannin. O objetivo deste estudo foi avaliar o efeito do tratamento com TKI-258 sobre a proliferação celular, e o papel da proteína PI3K nas vias de sinalização inibidas por esse inibidor em carcinoma epidermoide oral in vitro. Através dos ensaios de incorporação do BrdU e imunoexpressão do KI-67, marcadores de proliferação celular, foi determinada a taxa de proliferação de células SCC-4 de carcinoma epidermoide oral controle e tratadas por 6 h com: TKI-258 1 µM, 5 µM e 10 µM; LY294002 60 µM e/ou Wortmannin 2 µM; TKI 5 μM somente ou associado ao LY294002 ou ao Wortmannin; e, TKI 5 μM combinado com LY294002 e Wortmannin. Foi considerada uma significância de p<0,05. O tratamento com TKI-258 reduziu a taxa de proliferação de células SCC-4 que incorporaram BrdU [F(3,11) = 120,807, p<0,0001] e imunoexpressaram KI-67 [F(3,11) = 222,379, p<0,0001]. O percentual de células proliferativas também foi menor após o tratamento com os inibidores da PI3K, LY294002 e/ou Wortmannin, incorporação do BrdU [F(3,11) = 477,578, p<0,0001] e imunoexpressão do KI-67 [F(3,11) = 421,762, p<0,0001]. A associação do TKI-258 5 µM com LY294002 e/ou Wortmannin diminuiu ainda mais a taxa de proliferação na incorporação do BrdU [F(3,11) = 252,324, p<0,0001] e imunoexpressão do KI-67 [F(3,11) = 295,346, p<0,0001]. Os resultados obtidos neste estudo demonstraram que o TKI-258 apresenta um efeito antiproliferativo em células SCC-4 de carcinoma epidermoide oral e esse processo possivelmente pode ser regulado pelos receptores tirosina quinase bloqueados por esse inibidor, por meio de vias dependentes e independentes de PI3K.Oral squamous cell carcinoma presents high mortality rates. Tyrosine kinase receptors, FGFRs, PDGFRs and, VEGFRs, are amplified and/or overexpressed in this neoplasm and are blocked by the inhibitor TKI-258. These receptors activate PI3K, an intracellular protein that is often associated with carcinogenesis, that can be blocked by inhibitors LY294002 and Wortmannin. The aim of this study was to evaluate the effect of TKI-258 treatment on cell proliferation, and the role of PI3K protein in signaling pathways inhibited by this inhibitor in oral squamous cell carcinoma in vitro. Through the BrdU incorporation assays and KI-67 immunoexpression, cell proliferation markers, SCC-4 cells of oral squamous cell carcinoma were quantified and treated for 6 h with TKI-258 (1, 5 and 10 μM); LY294002 60 μM (LY) and/or Wortmannin 2 μM (WTN); TKI-258 5 μM only or associated with LY or WTN; and, 5 μM TKI-258 combined with LY and WTN. A significance of p<0.05 was considered. Treatment with TKI-258 reduced the proliferation rate in SCC-4 cells incorporated BrdU [F(3,11) =120.807, p<0.0001] and immunoexpressed KI-67 [F(3,11) = 222.379, p<0.0001]. The reduction percentage was also lower after treatment with PI3K, LY and/or WTN inhibitors, incorporation of BrdU [F(3,11) = 477.578, p<0.0001] and KI-67 [F(3,11) = 421.762, p<0.0001]. And, the association of 5 μM TKI-258 with LY and/or WTN further decreased the proliferation rate in BrdU incorporation [F(3.11) = 252.324, p<0.0001] and KI-67 immunoexpression [F(3,11) = 295.346, p<0.0001]. The results obtained in this study demonstrated that TKI-258 exhibits an antiproliferative effect on SCC-4 cells of OSCC and this process may possibly be regulated by the tyrosine kinase receptors blocked by that inhibitor, by means of PI3K dependent and independent pathways.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisUniversidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeCREMA, Virgínia Oliveira66127211620http://lattes.cnpq.br/2599388555203811SILVEIRA, Isadora Caixeta da2019-07-10T13:43:06Z2018-11-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfSILVEIRA, Isadora Caixeta da. Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro. 2018. 72f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2018.http://bdtd.uftm.edu.br/handle/tede/752porAL-JABER, A.; AL-NASSER, L.; EL-METWALLY, A. Epidemiology of oral cancer in Arab countries. Saudi Med J, v. 37, n. 3, p. 249-55, Mar 2016. ISSN 0379-5284. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26905345 >. ANDRÉ, F. et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res, v. 19, n. 13, p. 3693-702, Jul 2013. ISSN 1078-0432. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/23658459 >. ARORA, A.; SCHOLAR, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther, v. 315, n. 3, p. 971-9, Dec 2005. ISSN 0022-3565. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/16002463 >. BHULLAR, K. S. et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer, v. 17, n. 1, p. 48, Feb 2018. ISSN 1476-4598. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29455673 >. BRANDS, R. C. et al. Targeting VEGFR and FGFR in head and neck squamous cell carcinoma in vitro. Oncol Rep, Jul 2017. ISSN 1791-2431. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28714017 >. BROWN, K. K.; TOKER, A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000Prime Rep, v. 7, p. 13, 2015. ISSN 2051-7599. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25750731 >. CARNEIRO, A. C. et al. Tyrosine kinase inhibitor TKI-258 inhibits cell motility in oral squamous cell carcinoma in vitro. J Oral Pathol Med, Oct 2016. ISSN 1600-0714. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27732737 >. CHIKH, A. et al. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget, v. 7, n. 14, p. 18325-45, Apr 2016. ISSN 1949-2553. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26934321 >. CIERPIKOWSKI, P. et al. PDGFRα/HER2 and PDGFRα/p53 Co-expression in Oral Squamous Cell Carcinoma. Anticancer Res, v. 38, n. 2, p. 795-802, 02 2018. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29374704 >. DE MORAIS, E. F. et al. Prognostic Factors of Oral Squamous Cell Carcinoma in Young Patients: A Systematic Review. J Oral Maxillofac Surg, v. 75, n. 7, p. 1555-1566, Jul 2017. ISSN 1531-5053. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28061358 >. DEMOULIN, J. B.; ESSAGHIR, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, Mar 2014. ISSN 1879-0305. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24703957 >. DING, Y. Q. et al. Sunitinib modulates the radiosensitivity of esophageal squamous cell carcinoma cells in vitro. Dis Esophagus, v. 29, n. 8, p. 1144-1151, Nov 2016. ISSN 1442-2050. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26542732 >. ECONOMOPOULOU, P. et al. The emerging role of immunotherapy in head and neck squamous cell carcinoma (HNSCC): anti-tumor immunity and clinical applications. Ann Transl Med, v. 4, n. 9, p. 173, May 2016. ISSN 2305-5839. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27275486 >. ELFERINK, L. A.; RESTO, V. A. Receptor-tyrosine-kinase-targeted therapies for head and neck cancer. J Signal Transduct, v. 2011, p. 982879, 2011. ISSN 2090-1747. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21776391 >. FAES, S.; DORMOND, O. PI3K and AKT: Unfaithful Partners in Cancer. Int J Mol Sci, v. 16, n. 9, p. 21138-52, Sep 2015. ISSN 1422-0067. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26404259 >. FRANKSON, R. et al. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res, v. 77, n. 21, p. 5701-5705, 11 2017. ISSN 1538-7445. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28855209 >. FRUMAN, D. A.; ROMMEL, C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov, v. 13, n. 2, p. 140-56, Feb 2014. ISSN 1474-1784. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24481312 >. FURUYA, F. et al. Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis, v. 28, n. 12, p. 2451-8, Dec 2007. ISSN 1460-2180. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17660507 >. GANESH, D. et al. Potentially Malignant Oral Disorders and Cancer Transformation. Anticancer Res, v. 38, n. 6, p. 3223-3229, Jun 2018. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29848669 >. GHEDINI, G. C. et al. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther, Jun 2018. ISSN 1744-8328. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29936878 >. GOBIN, B. et al. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models. PLoS One, v. 9, n. 3, p. e90795, 2014. ISSN 1932-6203. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24599309 >. GOLIAS, C. H.; CHARALABOPOULOS, A.; CHARALABOPOULOS, K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract, v. 58, n. 12, p. 1134-41, Dec 2004. ISSN 1368- 5031. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15646411 >. GOTINK, K. J.; VERHEUL, H. M. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis, v. 13, n. 1, p. 1-14, Mar 2010. ISSN 1573-7209. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/20012482 >. HANAHAN, D.; WEINBERG, R. A. Hallmarks of cancer: the next generation. Cell, v. 144, n. 5, p. 646-74, Mar 2011. ISSN 1097-4172. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/21376230 >. HASSAN, B. et al. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin N Am, v. 22, n. 4, p. 641-64, Oct 2013. ISSN 1558-5042. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24012393 >. HELDIN, C. H.; LENNARTSSON, J.; WESTERMARK, B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med, v. 283, n. 1, p. 16-44, Jan 2018. ISSN 1365-2796. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28940884 >. HOLMES, D. PI3K pathway inhibitors approach junction. Nat Rev Drug Discov, v. 10, n. 8, p. 563-4, Aug 2011. ISSN 1474-1784. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21804582 >. HU, H.; LIU, Y.; JIANG, T. Mutation-introduced dimerization of receptor tyrosine kinases: from protein structure aberrations to carcinogenesis. Tumour Biol, v. 36, n. 3, p. 1423-8, Mar 2015. ISSN 1423-0380. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25750036 >. HUI, Q. et al. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci, v. 19, n. 7, Jun 2018. ISSN 1422-0067. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29949887 >. HÄNZE, J. et al. Epithelial mesenchymal transition status is associated with anti-cancer responses towards receptor tyrosine-kinase inhibition by dovitinib in human bladder cancer cells. BMC Cancer, v. 13, p. 589, 2013. ISSN 1471-2407. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24325461 >. IMAI, K.; TAKAOKA, A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer, v. 6, n. 9, p. 714-27, Sep 2006. ISSN 1474-175X. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/16929325 >. INCA. Estimativa 2018: incidência de câncer no Brasil. Rio de Janeiro: Coordenação de Prevenção e Vigilância: 128 p. 2017. IWASE, M. et al. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors. Int J Oncol, v. 31, n. 5, p. 1141-7, Nov 2007. ISSN 1019-6439. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17912441 >. KADEMANI, D. Oral cancer. Mayo Clin Proc, v. 82, n. 7, p. 878-87, Jul 2007. ISSN 0025-6196. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17605971 >. KANG, Y. K. et al. Phase II study of dovitinib in patients with metastatic and/or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib. Br J Cancer, v. 109, n. 9, p. 2309-15, Oct 2013. ISSN 1532-1827. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24084771 >. KARAMAN, S.; LEPPÄNEN, V. M.; ALITALO, K. Vascular endothelial growth factor signaling in development and disease. Development, v. 145, n. 14, 07 2018. ISSN 1477-9129. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30030240 >. KATCHBURIAN, E.; ARANA, V. Histologia e Embriologia Oral. 3ª ed. Rio de Janeiro: Guanabara Koogan, 2012. KE, X. Y. et al. LY294002 enhances inhibitory effect of gemcitabine on proliferation of human pancreatic carcinoma PANC-1 cells. J Huazhong Univ Sci Technolog Med Sci, v. 33, n. 1, p. 57-62, Feb 2013. ISSN 1672-0733. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23392708 >. KNIGHT, Z. A. Small molecule inhibitors of the PI3-kinase family. Curr Top Microbiol Immunol, v. 347, p. 263-78, 2010. ISSN 0070-217X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/20473788 >. KONG, D.; YAMORI, T. Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci, v. 99, n. 9, p. 1734-40, Sep 2008. ISSN 1349-7006. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/18616528 >. KORASHY, H. M. et al. Sunitinib Inhibits Breast Cancer Cell Proliferation by Inducing Apoptosis, Cell-cycle Arrest and DNA Repair While Inhibiting NF-κB Signaling Pathways. Anticancer Res, v. 37, n. 9, p. 4899-4909, 09 2017. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28870911 >. KUMAR, V. et al. Robbins e Cotran, Bases Patológicas das Doenças. Rio de Janeiro: Elsevier, 2010. LANKAT-BUTTGEREIT, B. et al. Effects of the tyrosine kinase inhibitor imatinib on neuroendocrine tumor cell growth. Digestion, v. 71, n. 3, p. 131-40, 2005. ISSN 0012-2823. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15785039 >. LEE, S. H. et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res, v. 11, n. 10, p. 3633-41, May 2005. ISSN 1078-0432. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15897558 >. LI, B. et al. Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget, v. 5, n. 22, p. 11576-87, Nov 2014. ISSN 1949- 2553. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25344912 >. LI, J. et al. PI3K/AKT/mTOR pathway is activated after imatinib secondary resistance in gastrointestinal stromal tumors (GISTs). Med Oncol, v. 32, n. 4, p. 111, Apr 2015. ISSN 1559- 131X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25757539 >. LI, N. A. et al. miR-196b regulates gastric cancer cell proliferation and invasion via PI3K/AKT/mTOR signaling pathway. Oncol Lett, v. 11, n. 3, p. 1745-1749, Mar 2016. ISSN 1792-1074. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26998071 >. LIANG, J. X.; GAO, W.; CAI, L. Fucosyltransferase VII promotes proliferation via the EGFR/AKT/mTOR pathway in A549 cells. Onco Targets Ther, v. 10, p. 3971-3978, 2017. ISSN 1178-6930. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28860805 >. LIN, P. et al. ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol Cell Biochem, v. 359, n. 1-2, p. 235-43, Jan 2012. ISSN 1573-4919. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21837402 >. LINDBLAD, O. et al. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene, v. 35, n. 39, p. 5119-31, 09 2016. ISSN 1476-5594. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26999641 >. LIU, J. et al. LY294002 potentiates the anti-cancer effect of oxaliplatin for gastric cancer via death receptor pathway. World J Gastroenterol, v. 17, n. 2, p. 181-90, Jan 2011. ISSN 2219- 2840. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21245990 >. ______. Natural products as kinase inhibitors. Nat Prod Rep, v. 29, n. 3, p. 392-403, Mar 2012. ISSN 1460-4752. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22231144>. LIU, Y. et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol, v. 12, n. 1, p. 99-107, Jan 2005. ISSN 1074- 5521. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15664519 >. LIU, Z.; SUN, Q.; WANG, X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol, v. 10, n. 1, p. 22-32, Feb 2017. ISSN 1936-5233. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27888710 >. LO, P.; HAWROT, H.; GEORGIOU, M. Apicobasal polarity and its role in cancer progression. Biomol Concepts, v. 3, n. 6, p. 505-21, Dec 2012. ISSN 1868-5021. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/25436555 >. LU, J. et al. LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett, v. 15, n. 4, p. 4358-4364, Apr 2018. ISSN 1792-1074. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29541204 >. MACHIELS, J. P. et al. Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep, v. 6, p. 44, 2014. ISSN 2051-7599. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24991421 >. MADANI, M.; BERARDI, T.; STOOPLER, E. T. Anatomic and examination considerations of the oral cavity. Med Clin North Am, v. 98, n. 6, p. 1225-38, Nov 2014. ISSN 1557-9859. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25443674 >. MAHMOOD, N. et al. Impact of age at diagnosis on clinicopathological outcomes of oral squamous cell carcinoma patients. Pak J Med Sci, v. 34, n. 3, p. 595-599, 2018 May-Jun 2018. ISSN 1682-024X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30034422 >. MAN, W. Y.; MAK, J. P.; POON, R. Y. Dovitinib induces mitotic defects and activates the G2 DNA damage checkpoint. J Cell Mol Med, v. 18, n. 1, p. 143-55, Jan 2014. ISSN 1582-4934. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24238094 >. MARTINI, M. et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med, v. 46, n. 6, p. 372-83, Sep 2014. ISSN 1365-2060. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24897931 >. MARTINS, F. et al. PI3K-AKT-mTOR pathway proteins are differently expressed in oral carcinogenesis. J Oral Pathol Med, v. 45, n. 10, p. 746-752, Nov 2016. ISSN 1600-0714. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26991907 >. MIZRACHI, A. et al. Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat Commun, v. 8, p. 14292, Feb 2017. ISSN 2041- 1723. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28194032 >. MORO, J. D. S. et al. Oral and oropharyngeal cancer: epidemiology and survival analysis. Einstein (Sao Paulo), v. 16, n. 2, p. eAO4248, Jun 2018. ISSN 2317-6385. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29898090 >. MOTZER, R. J. et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol, v. 15, n. 3, p. 286-96, Mar 2014. ISSN 1474-5488. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24556040 >. NANCI, A. Ten Cate's Oral Histology Development, Structure and Function 8 a edição. Montreal: 2013. 398. OIKAWA, Y. et al. Receptor tyrosine kinase amplification is predictive of distant metastasis in patients with oral squamous cell carcinoma. Cancer Sci, v. 108, n. 2, p. 256-266, Feb 2017. ISSN 1349-7006. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27889930 >. PADMA, R. et al. The relationship between histological differentiation and disease recurrence of primary oral squamous cell carcinoma. J Oral Maxillofac Pathol, v. 21, n. 3, p. 461, 2017 Sep-Dec 2017. ISSN 0973-029X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29391735 >. PAL, J. et al. Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics, v. 9, n. 2, p. 55-66, 2012 Mar-Apr 2012. ISSN 1790-6245. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22399496 >. PARK, H. S. et al. Synergistic antitumor effect of NVP-BEZ235 and sunitinib on docetaxelresistant human castration-resistant prostate cancer cells. Anticancer Res, v. 34, n. 7, p. 3457-68, Jul 2014. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24982354 >. PEREIRA, M. C. et al. Histologic subtypes of oral squamous cell carcinoma: prognostic relevance. J Can Dent Assoc, v. 73, n. 4, p. 339-44, May 2007. ISSN 1488-2159. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17484800 >. PIANKA, A. et al. Vascular endothelial growth factor receptor isoforms: are they present in oral squamous cell carcinoma? J Oral Maxillofac Surg, v. 73, n. 5, p. 897-904, May 2015. ISSN 1531-5053. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25883000 >. PORTA, C. et al. Dovitinib (CHIR258, TKI258): structure, development and preclinical and clinical activity. Future Oncol, v. 11, n. 1, p. 39-50, 2015. ISSN 1744-8301. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25572783 >. PORTER, S. et al. Risk factors and etiopathogenesis of potentially premalignant oral epithelial lesions. Oral Surg Oral Med Oral Pathol Oral Radiol, v. 125, n. 6, p. 603-611, Jun 2018. ISSN 2212-4411. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29891084>. QING, J. et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest, v. 119, n. 5, p. 1216-29, May 2009. ISSN 1558-8238. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/19381019 >. REGAD, T. Targeting RTK Signaling Pathways in Cancer. Cancers (Basel), v. 7, n. 3, p. 1758-84, Sep 2015. ISSN 2072-6694. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26404379 >. RENHOWE, P. A. et al. Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: a novel class of receptor tyrosine kinase inhibitors. J Med Chem, v. 52, n. 2, p. 278-92, Jan 2009. ISSN 1520-4804. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19113866 >. ROTHAEUSLER, K.; BAUMGARTH, N. Assessment of cell proliferation by 5- bromodeoxyuridine (BrdU) labeling for multicolor flow cytometry. Curr Protoc Cytom, v. Chapter 7, p. Unit7.31, Apr 2007. ISSN 1934-9300. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/18770853 >. RUBACK, M. J. et al. Clinical and epidemiological characteristics of patients in the head and neck surgery department of a university hospital. Sao Paulo Med J, v. 130, n. 5, p. 307-13, 2012. ISSN 1806-9460. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23174870>. SCHEID, C. et al. Phase 2 study of dovitinib in patients with relapsed or refractory multiple myeloma with or without t(4;14) translocation. Eur J Haematol, v. 95, n. 4, p. 316-24, Oct 2015. ISSN 1600-0609. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25402977>. SCHÄFER, N. et al. Phase I trial of dovitinib (TKI258) in recurrent glioblastoma. J Cancer Res Clin Oncol, v. 142, n. 7, p. 1581-9, Jul 2016. ISSN 1432-1335. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27100354 >. SEVER, R.; BRUGGE, J. S. Signal transduction in cancer. Cold Spring Harb Perspect Med, v. 5, n. 4, Apr 2015. ISSN 2157-1422. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25833940 >. SHIMIZU, A. et al. Vascular Endothelial Growth Factor-A Exerts Diverse Cellular Effects via Small G Proteins, Rho and Rap. Int J Mol Sci, v. 19, n. 4, Apr 2018. ISSN 1422-0067. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29659486 >. SIERRA, J. R.; CEPERO, V.; GIORDANO, S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer, v. 9, p. 75, Apr 2010. ISSN 1476-4598. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/20385023 >. SIMPSON, D. R.; MELL, L. K.; COHEN, E. E. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol, v. 51, n. 4, p. 291-8, Apr 2015. ISSN 1879-0593. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25532816 >. SINNBERG, T. et al. Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol, v. 129, n. 6, p. 1500-15, Jun 2009. ISSN 1523- 1747. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19078992 >. SMOLENSKY, D. et al. Inhibition of the PI3K/AKT Pathway Sensitizes Oral Squamous Cell Carcinoma Cells to Anthracycline-Based Chemotherapy In Vitro. J Cell Biochem, v. 118, n. 9, p. 2615-2624, 09 2017. ISSN 1097-4644. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27649518 >. SWEENY, L. et al. Evaluation of tyrosine receptor kinases in the interactions of head and neck squamous cell carcinoma cells and fibroblasts. Oral Oncol, v. 48, n. 12, p. 1242-9, Dec 2012. ISSN 1879-0593. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22795534>. TANDON, P. et al. The prevalence of squamous cell carcinoma in different sites of oral cavity at our Rural Health Care Centre in Loni, Maharashtra - a retrospective 10-year study. Contemp Oncol (Pozn), v. 21, n. 2, p. 178-183, 2017. ISSN 1428-2526. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28947890 >. THOMSON, P. J. Perspectives on oral squamous cell carcinoma prevention-proliferation, position, progression and prediction. J Oral Pathol Med, May 2018. ISSN 1600-0714. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29752860 >. THORPE, L. M.; YUZUGULLU, H.; ZHAO, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer, v. 15, n. 1, p. 7-24, Jan 2015. ISSN 1474-1768. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25533673 >. VITTAL, K. et al. Immunohistochemical expression of polo-like kinase 1 in oral squamous cell carcinoma and oral submucous fibrosis. Indian J Dent Res, v. 29, n. 2, p. 171-175, 2018 MarApr 2018. ISSN 1998-3603. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29652009 >. WANG, Z. et al. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev, v. 36, n. 3, p. 491-502, 09 2017. ISSN 1573-7233. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28822012 >. WILLIAMS, G. H.; STOEBER, K. The cell cycle and cancer. J Pathol, v. 226, n. 2, p. 352-64, Jan 2012. ISSN 1096-9896. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21990031>. WU, Q. et al. Wortmannin inhibits K562 leukemic cells by regulating PI3k/Akt channel in vitro. J Huazhong Univ Sci Technolog Med Sci, v. 29, n. 4, p. 451-6, Aug 2009. ISSN 1672- 0733. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19662361 >. XIE, X. et al. Roles of FGFR in oral carcinogenesis. Cell Prolif, v. 49, n. 3, p. 261-9, Jun 2016. ISSN 1365-2184. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27218663 >. YANAMANDRA, M.; MITRA, S.; GIRI, A. Development and application of PI3K assays for novel drug discovery. Expert Opin Drug Discov, v. 10, n. 2, p. 171-86, Feb 2015. ISSN 1746-045X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25547459 >. YING, H. et al. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol Cancer Ther, v. 5, n. 9, p. 2158-64, Sep 2006. ISSN 1535-7163. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/16985048 >. YUN, J. et al. Wortmannin inhibits proliferation and induces apoptosis of MCF-7 breast cancer cells. Eur J Gynaecol Oncol, v. 33, n. 4, p. 367-9, 2012. ISSN 0392-2936. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23091892 >. ZANG, C. et al. Targeting multiple tyrosine kinase receptors with Dovitinib blocks invasion and the interaction between tumor cells and cancer-associated fibroblasts in breast cancer. Cell Cycle, v. 14, n. 8, p. 1291-9, 2015. ISSN 1551-4005. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25714853 >. ZHANG, H. et al. Enhanced FGFR signalling predisposes pancreatic cancer to the effect of a potent FGFR inhibitor in preclinical models. Br J Cancer, v. 110, n. 2, p. 320-9, Jan 2014. ISSN 1532-1827. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24327018 >. ______. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemoresistance in hepatocellular carcinoma. Oncol Lett, v. 15, n. 6, p. 9377-9384, Jun 2018. ISSN 1792-1074. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29928334 >. ZHANG, T. et al. Inhibition of PI3 kinases enhances the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Rep, v. 24, n. 6, p. 1683-9, Dec 2010. ISSN 1791- 2431. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21042768 >.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-07-11T04:00:33Zoai:bdtd.uftm.edu.br:tede/752Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-07-11T04:00:33Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
title Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
spellingShingle Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
SILVEIRA, Isadora Caixeta da
Carcinoma epidermoide oral.
Inibidores tirosina quinase.
PI3K.
Proliferação celular.
Cell proliferation.
Oral squamous cell carcinoma.
PI3K.
Tyrosine kinase inhibitors.
Morfologia
title_short Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
title_full Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
title_fullStr Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
title_full_unstemmed Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
title_sort Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro
author SILVEIRA, Isadora Caixeta da
author_facet SILVEIRA, Isadora Caixeta da
author_role author
dc.contributor.none.fl_str_mv CREMA, Virgínia Oliveira
66127211620
http://lattes.cnpq.br/2599388555203811
dc.contributor.author.fl_str_mv SILVEIRA, Isadora Caixeta da
dc.subject.por.fl_str_mv Carcinoma epidermoide oral.
Inibidores tirosina quinase.
PI3K.
Proliferação celular.
Cell proliferation.
Oral squamous cell carcinoma.
PI3K.
Tyrosine kinase inhibitors.
Morfologia
topic Carcinoma epidermoide oral.
Inibidores tirosina quinase.
PI3K.
Proliferação celular.
Cell proliferation.
Oral squamous cell carcinoma.
PI3K.
Tyrosine kinase inhibitors.
Morfologia
description O carcinoma epidermoide oral apresenta altas taxas de mortalidade. Os receptores tirosina quinase, FGFRs, PDGFRs e VEGFRs, estão amplificados e/ou superexpressos nessa neoplasia e são bloqueados pelo inibidor TKI-258. Esses receptores ativam a PI3K, proteína intracelular que está frequentemente associada à carcinogênese, que pode ser bloqueada pelos inibidores LY294002 e Wortmannin. O objetivo deste estudo foi avaliar o efeito do tratamento com TKI-258 sobre a proliferação celular, e o papel da proteína PI3K nas vias de sinalização inibidas por esse inibidor em carcinoma epidermoide oral in vitro. Através dos ensaios de incorporação do BrdU e imunoexpressão do KI-67, marcadores de proliferação celular, foi determinada a taxa de proliferação de células SCC-4 de carcinoma epidermoide oral controle e tratadas por 6 h com: TKI-258 1 µM, 5 µM e 10 µM; LY294002 60 µM e/ou Wortmannin 2 µM; TKI 5 μM somente ou associado ao LY294002 ou ao Wortmannin; e, TKI 5 μM combinado com LY294002 e Wortmannin. Foi considerada uma significância de p<0,05. O tratamento com TKI-258 reduziu a taxa de proliferação de células SCC-4 que incorporaram BrdU [F(3,11) = 120,807, p<0,0001] e imunoexpressaram KI-67 [F(3,11) = 222,379, p<0,0001]. O percentual de células proliferativas também foi menor após o tratamento com os inibidores da PI3K, LY294002 e/ou Wortmannin, incorporação do BrdU [F(3,11) = 477,578, p<0,0001] e imunoexpressão do KI-67 [F(3,11) = 421,762, p<0,0001]. A associação do TKI-258 5 µM com LY294002 e/ou Wortmannin diminuiu ainda mais a taxa de proliferação na incorporação do BrdU [F(3,11) = 252,324, p<0,0001] e imunoexpressão do KI-67 [F(3,11) = 295,346, p<0,0001]. Os resultados obtidos neste estudo demonstraram que o TKI-258 apresenta um efeito antiproliferativo em células SCC-4 de carcinoma epidermoide oral e esse processo possivelmente pode ser regulado pelos receptores tirosina quinase bloqueados por esse inibidor, por meio de vias dependentes e independentes de PI3K.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-13
2019-07-10T13:43:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVEIRA, Isadora Caixeta da. Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro. 2018. 72f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2018.
http://bdtd.uftm.edu.br/handle/tede/752
identifier_str_mv SILVEIRA, Isadora Caixeta da. Efeito do TKI-258 sobre a proliferação celular em carcinoma epidermoide oral in vitro. 2018. 72f. Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2018.
url http://bdtd.uftm.edu.br/handle/tede/752
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv AL-JABER, A.; AL-NASSER, L.; EL-METWALLY, A. Epidemiology of oral cancer in Arab countries. Saudi Med J, v. 37, n. 3, p. 249-55, Mar 2016. ISSN 0379-5284. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26905345 >. ANDRÉ, F. et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res, v. 19, n. 13, p. 3693-702, Jul 2013. ISSN 1078-0432. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/23658459 >. ARORA, A.; SCHOLAR, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther, v. 315, n. 3, p. 971-9, Dec 2005. ISSN 0022-3565. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/16002463 >. BHULLAR, K. S. et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer, v. 17, n. 1, p. 48, Feb 2018. ISSN 1476-4598. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29455673 >. BRANDS, R. C. et al. Targeting VEGFR and FGFR in head and neck squamous cell carcinoma in vitro. Oncol Rep, Jul 2017. ISSN 1791-2431. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28714017 >. BROWN, K. K.; TOKER, A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000Prime Rep, v. 7, p. 13, 2015. ISSN 2051-7599. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25750731 >. CARNEIRO, A. C. et al. Tyrosine kinase inhibitor TKI-258 inhibits cell motility in oral squamous cell carcinoma in vitro. J Oral Pathol Med, Oct 2016. ISSN 1600-0714. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27732737 >. CHIKH, A. et al. Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget, v. 7, n. 14, p. 18325-45, Apr 2016. ISSN 1949-2553. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26934321 >. CIERPIKOWSKI, P. et al. PDGFRα/HER2 and PDGFRα/p53 Co-expression in Oral Squamous Cell Carcinoma. Anticancer Res, v. 38, n. 2, p. 795-802, 02 2018. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29374704 >. DE MORAIS, E. F. et al. Prognostic Factors of Oral Squamous Cell Carcinoma in Young Patients: A Systematic Review. J Oral Maxillofac Surg, v. 75, n. 7, p. 1555-1566, Jul 2017. ISSN 1531-5053. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28061358 >. DEMOULIN, J. B.; ESSAGHIR, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, Mar 2014. ISSN 1879-0305. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24703957 >. DING, Y. Q. et al. Sunitinib modulates the radiosensitivity of esophageal squamous cell carcinoma cells in vitro. Dis Esophagus, v. 29, n. 8, p. 1144-1151, Nov 2016. ISSN 1442-2050. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26542732 >. ECONOMOPOULOU, P. et al. The emerging role of immunotherapy in head and neck squamous cell carcinoma (HNSCC): anti-tumor immunity and clinical applications. Ann Transl Med, v. 4, n. 9, p. 173, May 2016. ISSN 2305-5839. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27275486 >. ELFERINK, L. A.; RESTO, V. A. Receptor-tyrosine-kinase-targeted therapies for head and neck cancer. J Signal Transduct, v. 2011, p. 982879, 2011. ISSN 2090-1747. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21776391 >. FAES, S.; DORMOND, O. PI3K and AKT: Unfaithful Partners in Cancer. Int J Mol Sci, v. 16, n. 9, p. 21138-52, Sep 2015. ISSN 1422-0067. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26404259 >. FRANKSON, R. et al. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res, v. 77, n. 21, p. 5701-5705, 11 2017. ISSN 1538-7445. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28855209 >. FRUMAN, D. A.; ROMMEL, C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov, v. 13, n. 2, p. 140-56, Feb 2014. ISSN 1474-1784. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24481312 >. FURUYA, F. et al. Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis, v. 28, n. 12, p. 2451-8, Dec 2007. ISSN 1460-2180. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17660507 >. GANESH, D. et al. Potentially Malignant Oral Disorders and Cancer Transformation. Anticancer Res, v. 38, n. 6, p. 3223-3229, Jun 2018. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29848669 >. GHEDINI, G. C. et al. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther, Jun 2018. ISSN 1744-8328. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29936878 >. GOBIN, B. et al. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models. PLoS One, v. 9, n. 3, p. e90795, 2014. ISSN 1932-6203. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24599309 >. GOLIAS, C. H.; CHARALABOPOULOS, A.; CHARALABOPOULOS, K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract, v. 58, n. 12, p. 1134-41, Dec 2004. ISSN 1368- 5031. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15646411 >. GOTINK, K. J.; VERHEUL, H. M. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis, v. 13, n. 1, p. 1-14, Mar 2010. ISSN 1573-7209. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/20012482 >. HANAHAN, D.; WEINBERG, R. A. Hallmarks of cancer: the next generation. Cell, v. 144, n. 5, p. 646-74, Mar 2011. ISSN 1097-4172. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/21376230 >. HASSAN, B. et al. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin N Am, v. 22, n. 4, p. 641-64, Oct 2013. ISSN 1558-5042. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24012393 >. HELDIN, C. H.; LENNARTSSON, J.; WESTERMARK, B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med, v. 283, n. 1, p. 16-44, Jan 2018. ISSN 1365-2796. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28940884 >. HOLMES, D. PI3K pathway inhibitors approach junction. Nat Rev Drug Discov, v. 10, n. 8, p. 563-4, Aug 2011. ISSN 1474-1784. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21804582 >. HU, H.; LIU, Y.; JIANG, T. Mutation-introduced dimerization of receptor tyrosine kinases: from protein structure aberrations to carcinogenesis. Tumour Biol, v. 36, n. 3, p. 1423-8, Mar 2015. ISSN 1423-0380. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25750036 >. HUI, Q. et al. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci, v. 19, n. 7, Jun 2018. ISSN 1422-0067. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29949887 >. HÄNZE, J. et al. Epithelial mesenchymal transition status is associated with anti-cancer responses towards receptor tyrosine-kinase inhibition by dovitinib in human bladder cancer cells. BMC Cancer, v. 13, p. 589, 2013. ISSN 1471-2407. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24325461 >. IMAI, K.; TAKAOKA, A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer, v. 6, n. 9, p. 714-27, Sep 2006. ISSN 1474-175X. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/16929325 >. INCA. Estimativa 2018: incidência de câncer no Brasil. Rio de Janeiro: Coordenação de Prevenção e Vigilância: 128 p. 2017. IWASE, M. et al. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors. Int J Oncol, v. 31, n. 5, p. 1141-7, Nov 2007. ISSN 1019-6439. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17912441 >. KADEMANI, D. Oral cancer. Mayo Clin Proc, v. 82, n. 7, p. 878-87, Jul 2007. ISSN 0025-6196. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17605971 >. KANG, Y. K. et al. Phase II study of dovitinib in patients with metastatic and/or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib. Br J Cancer, v. 109, n. 9, p. 2309-15, Oct 2013. ISSN 1532-1827. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24084771 >. KARAMAN, S.; LEPPÄNEN, V. M.; ALITALO, K. Vascular endothelial growth factor signaling in development and disease. Development, v. 145, n. 14, 07 2018. ISSN 1477-9129. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30030240 >. KATCHBURIAN, E.; ARANA, V. Histologia e Embriologia Oral. 3ª ed. Rio de Janeiro: Guanabara Koogan, 2012. KE, X. Y. et al. LY294002 enhances inhibitory effect of gemcitabine on proliferation of human pancreatic carcinoma PANC-1 cells. J Huazhong Univ Sci Technolog Med Sci, v. 33, n. 1, p. 57-62, Feb 2013. ISSN 1672-0733. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23392708 >. KNIGHT, Z. A. Small molecule inhibitors of the PI3-kinase family. Curr Top Microbiol Immunol, v. 347, p. 263-78, 2010. ISSN 0070-217X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/20473788 >. KONG, D.; YAMORI, T. Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci, v. 99, n. 9, p. 1734-40, Sep 2008. ISSN 1349-7006. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/18616528 >. KORASHY, H. M. et al. Sunitinib Inhibits Breast Cancer Cell Proliferation by Inducing Apoptosis, Cell-cycle Arrest and DNA Repair While Inhibiting NF-κB Signaling Pathways. Anticancer Res, v. 37, n. 9, p. 4899-4909, 09 2017. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28870911 >. KUMAR, V. et al. Robbins e Cotran, Bases Patológicas das Doenças. Rio de Janeiro: Elsevier, 2010. LANKAT-BUTTGEREIT, B. et al. Effects of the tyrosine kinase inhibitor imatinib on neuroendocrine tumor cell growth. Digestion, v. 71, n. 3, p. 131-40, 2005. ISSN 0012-2823. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15785039 >. LEE, S. H. et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res, v. 11, n. 10, p. 3633-41, May 2005. ISSN 1078-0432. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15897558 >. LI, B. et al. Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget, v. 5, n. 22, p. 11576-87, Nov 2014. ISSN 1949- 2553. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25344912 >. LI, J. et al. PI3K/AKT/mTOR pathway is activated after imatinib secondary resistance in gastrointestinal stromal tumors (GISTs). Med Oncol, v. 32, n. 4, p. 111, Apr 2015. ISSN 1559- 131X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25757539 >. LI, N. A. et al. miR-196b regulates gastric cancer cell proliferation and invasion via PI3K/AKT/mTOR signaling pathway. Oncol Lett, v. 11, n. 3, p. 1745-1749, Mar 2016. ISSN 1792-1074. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26998071 >. LIANG, J. X.; GAO, W.; CAI, L. Fucosyltransferase VII promotes proliferation via the EGFR/AKT/mTOR pathway in A549 cells. Onco Targets Ther, v. 10, p. 3971-3978, 2017. ISSN 1178-6930. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28860805 >. LIN, P. et al. ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol Cell Biochem, v. 359, n. 1-2, p. 235-43, Jan 2012. ISSN 1573-4919. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21837402 >. LINDBLAD, O. et al. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene, v. 35, n. 39, p. 5119-31, 09 2016. ISSN 1476-5594. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26999641 >. LIU, J. et al. LY294002 potentiates the anti-cancer effect of oxaliplatin for gastric cancer via death receptor pathway. World J Gastroenterol, v. 17, n. 2, p. 181-90, Jan 2011. ISSN 2219- 2840. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21245990 >. ______. Natural products as kinase inhibitors. Nat Prod Rep, v. 29, n. 3, p. 392-403, Mar 2012. ISSN 1460-4752. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22231144>. LIU, Y. et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol, v. 12, n. 1, p. 99-107, Jan 2005. ISSN 1074- 5521. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15664519 >. LIU, Z.; SUN, Q.; WANG, X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol, v. 10, n. 1, p. 22-32, Feb 2017. ISSN 1936-5233. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27888710 >. LO, P.; HAWROT, H.; GEORGIOU, M. Apicobasal polarity and its role in cancer progression. Biomol Concepts, v. 3, n. 6, p. 505-21, Dec 2012. ISSN 1868-5021. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/25436555 >. LU, J. et al. LY294002 inhibits the Warburg effect in gastric cancer cells by downregulating pyruvate kinase M2. Oncol Lett, v. 15, n. 4, p. 4358-4364, Apr 2018. ISSN 1792-1074. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29541204 >. MACHIELS, J. P. et al. Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep, v. 6, p. 44, 2014. ISSN 2051-7599. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24991421 >. MADANI, M.; BERARDI, T.; STOOPLER, E. T. Anatomic and examination considerations of the oral cavity. Med Clin North Am, v. 98, n. 6, p. 1225-38, Nov 2014. ISSN 1557-9859. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25443674 >. MAHMOOD, N. et al. Impact of age at diagnosis on clinicopathological outcomes of oral squamous cell carcinoma patients. Pak J Med Sci, v. 34, n. 3, p. 595-599, 2018 May-Jun 2018. ISSN 1682-024X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30034422 >. MAN, W. Y.; MAK, J. P.; POON, R. Y. Dovitinib induces mitotic defects and activates the G2 DNA damage checkpoint. J Cell Mol Med, v. 18, n. 1, p. 143-55, Jan 2014. ISSN 1582-4934. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24238094 >. MARTINI, M. et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med, v. 46, n. 6, p. 372-83, Sep 2014. ISSN 1365-2060. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24897931 >. MARTINS, F. et al. PI3K-AKT-mTOR pathway proteins are differently expressed in oral carcinogenesis. J Oral Pathol Med, v. 45, n. 10, p. 746-752, Nov 2016. ISSN 1600-0714. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26991907 >. MIZRACHI, A. et al. Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat Commun, v. 8, p. 14292, Feb 2017. ISSN 2041- 1723. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28194032 >. MORO, J. D. S. et al. Oral and oropharyngeal cancer: epidemiology and survival analysis. Einstein (Sao Paulo), v. 16, n. 2, p. eAO4248, Jun 2018. ISSN 2317-6385. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29898090 >. MOTZER, R. J. et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol, v. 15, n. 3, p. 286-96, Mar 2014. ISSN 1474-5488. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24556040 >. NANCI, A. Ten Cate's Oral Histology Development, Structure and Function 8 a edição. Montreal: 2013. 398. OIKAWA, Y. et al. Receptor tyrosine kinase amplification is predictive of distant metastasis in patients with oral squamous cell carcinoma. Cancer Sci, v. 108, n. 2, p. 256-266, Feb 2017. ISSN 1349-7006. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27889930 >. PADMA, R. et al. The relationship between histological differentiation and disease recurrence of primary oral squamous cell carcinoma. J Oral Maxillofac Pathol, v. 21, n. 3, p. 461, 2017 Sep-Dec 2017. ISSN 0973-029X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29391735 >. PAL, J. et al. Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics, v. 9, n. 2, p. 55-66, 2012 Mar-Apr 2012. ISSN 1790-6245. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22399496 >. PARK, H. S. et al. Synergistic antitumor effect of NVP-BEZ235 and sunitinib on docetaxelresistant human castration-resistant prostate cancer cells. Anticancer Res, v. 34, n. 7, p. 3457-68, Jul 2014. ISSN 1791-7530. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24982354 >. PEREIRA, M. C. et al. Histologic subtypes of oral squamous cell carcinoma: prognostic relevance. J Can Dent Assoc, v. 73, n. 4, p. 339-44, May 2007. ISSN 1488-2159. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17484800 >. PIANKA, A. et al. Vascular endothelial growth factor receptor isoforms: are they present in oral squamous cell carcinoma? J Oral Maxillofac Surg, v. 73, n. 5, p. 897-904, May 2015. ISSN 1531-5053. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25883000 >. PORTA, C. et al. Dovitinib (CHIR258, TKI258): structure, development and preclinical and clinical activity. Future Oncol, v. 11, n. 1, p. 39-50, 2015. ISSN 1744-8301. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25572783 >. PORTER, S. et al. Risk factors and etiopathogenesis of potentially premalignant oral epithelial lesions. Oral Surg Oral Med Oral Pathol Oral Radiol, v. 125, n. 6, p. 603-611, Jun 2018. ISSN 2212-4411. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29891084>. QING, J. et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest, v. 119, n. 5, p. 1216-29, May 2009. ISSN 1558-8238. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/19381019 >. REGAD, T. Targeting RTK Signaling Pathways in Cancer. Cancers (Basel), v. 7, n. 3, p. 1758-84, Sep 2015. ISSN 2072-6694. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26404379 >. RENHOWE, P. A. et al. Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: a novel class of receptor tyrosine kinase inhibitors. J Med Chem, v. 52, n. 2, p. 278-92, Jan 2009. ISSN 1520-4804. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19113866 >. ROTHAEUSLER, K.; BAUMGARTH, N. Assessment of cell proliferation by 5- bromodeoxyuridine (BrdU) labeling for multicolor flow cytometry. Curr Protoc Cytom, v. Chapter 7, p. Unit7.31, Apr 2007. ISSN 1934-9300. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/18770853 >. RUBACK, M. J. et al. Clinical and epidemiological characteristics of patients in the head and neck surgery department of a university hospital. Sao Paulo Med J, v. 130, n. 5, p. 307-13, 2012. ISSN 1806-9460. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23174870>. SCHEID, C. et al. Phase 2 study of dovitinib in patients with relapsed or refractory multiple myeloma with or without t(4;14) translocation. Eur J Haematol, v. 95, n. 4, p. 316-24, Oct 2015. ISSN 1600-0609. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25402977>. SCHÄFER, N. et al. Phase I trial of dovitinib (TKI258) in recurrent glioblastoma. J Cancer Res Clin Oncol, v. 142, n. 7, p. 1581-9, Jul 2016. ISSN 1432-1335. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27100354 >. SEVER, R.; BRUGGE, J. S. Signal transduction in cancer. Cold Spring Harb Perspect Med, v. 5, n. 4, Apr 2015. ISSN 2157-1422. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25833940 >. SHIMIZU, A. et al. Vascular Endothelial Growth Factor-A Exerts Diverse Cellular Effects via Small G Proteins, Rho and Rap. Int J Mol Sci, v. 19, n. 4, Apr 2018. ISSN 1422-0067. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29659486 >. SIERRA, J. R.; CEPERO, V.; GIORDANO, S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer, v. 9, p. 75, Apr 2010. ISSN 1476-4598. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/20385023 >. SIMPSON, D. R.; MELL, L. K.; COHEN, E. E. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol, v. 51, n. 4, p. 291-8, Apr 2015. ISSN 1879-0593. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25532816 >. SINNBERG, T. et al. Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol, v. 129, n. 6, p. 1500-15, Jun 2009. ISSN 1523- 1747. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19078992 >. SMOLENSKY, D. et al. Inhibition of the PI3K/AKT Pathway Sensitizes Oral Squamous Cell Carcinoma Cells to Anthracycline-Based Chemotherapy In Vitro. J Cell Biochem, v. 118, n. 9, p. 2615-2624, 09 2017. ISSN 1097-4644. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27649518 >. SWEENY, L. et al. Evaluation of tyrosine receptor kinases in the interactions of head and neck squamous cell carcinoma cells and fibroblasts. Oral Oncol, v. 48, n. 12, p. 1242-9, Dec 2012. ISSN 1879-0593. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22795534>. TANDON, P. et al. The prevalence of squamous cell carcinoma in different sites of oral cavity at our Rural Health Care Centre in Loni, Maharashtra - a retrospective 10-year study. Contemp Oncol (Pozn), v. 21, n. 2, p. 178-183, 2017. ISSN 1428-2526. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28947890 >. THOMSON, P. J. Perspectives on oral squamous cell carcinoma prevention-proliferation, position, progression and prediction. J Oral Pathol Med, May 2018. ISSN 1600-0714. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29752860 >. THORPE, L. M.; YUZUGULLU, H.; ZHAO, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer, v. 15, n. 1, p. 7-24, Jan 2015. ISSN 1474-1768. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25533673 >. VITTAL, K. et al. Immunohistochemical expression of polo-like kinase 1 in oral squamous cell carcinoma and oral submucous fibrosis. Indian J Dent Res, v. 29, n. 2, p. 171-175, 2018 MarApr 2018. ISSN 1998-3603. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29652009 >. WANG, Z. et al. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev, v. 36, n. 3, p. 491-502, 09 2017. ISSN 1573-7233. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28822012 >. WILLIAMS, G. H.; STOEBER, K. The cell cycle and cancer. J Pathol, v. 226, n. 2, p. 352-64, Jan 2012. ISSN 1096-9896. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21990031>. WU, Q. et al. Wortmannin inhibits K562 leukemic cells by regulating PI3k/Akt channel in vitro. J Huazhong Univ Sci Technolog Med Sci, v. 29, n. 4, p. 451-6, Aug 2009. ISSN 1672- 0733. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19662361 >. XIE, X. et al. Roles of FGFR in oral carcinogenesis. Cell Prolif, v. 49, n. 3, p. 261-9, Jun 2016. ISSN 1365-2184. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27218663 >. YANAMANDRA, M.; MITRA, S.; GIRI, A. Development and application of PI3K assays for novel drug discovery. Expert Opin Drug Discov, v. 10, n. 2, p. 171-86, Feb 2015. ISSN 1746-045X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25547459 >. YING, H. et al. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol Cancer Ther, v. 5, n. 9, p. 2158-64, Sep 2006. ISSN 1535-7163. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/16985048 >. YUN, J. et al. Wortmannin inhibits proliferation and induces apoptosis of MCF-7 breast cancer cells. Eur J Gynaecol Oncol, v. 33, n. 4, p. 367-9, 2012. ISSN 0392-2936. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23091892 >. ZANG, C. et al. Targeting multiple tyrosine kinase receptors with Dovitinib blocks invasion and the interaction between tumor cells and cancer-associated fibroblasts in breast cancer. Cell Cycle, v. 14, n. 8, p. 1291-9, 2015. ISSN 1551-4005. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/25714853 >. ZHANG, H. et al. Enhanced FGFR signalling predisposes pancreatic cancer to the effect of a potent FGFR inhibitor in preclinical models. Br J Cancer, v. 110, n. 2, p. 320-9, Jan 2014. ISSN 1532-1827. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24327018 >. ______. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemoresistance in hepatocellular carcinoma. Oncol Lett, v. 15, n. 6, p. 9377-9384, Jun 2018. ISSN 1792-1074. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29928334 >. ZHANG, T. et al. Inhibition of PI3 kinases enhances the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Rep, v. 24, n. 6, p. 1683-9, Dec 2010. ISSN 1791- 2431. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/21042768 >.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde
Brasil
UFTM
Programa de Pós-Graduação em Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da Saúde
Brasil
UFTM
Programa de Pós-Graduação em Ciências da Saúde
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1797221119751618560