Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFTM |
Texto Completo: | http://bdtd.uftm.edu.br/handle/tede/669 |
Resumo: | Neste estudo, os efeitos dos surfactantes iônicos (laurilsulfato de sódio e ácido húmico) na transferência de oxigênio são investigados em um reator cilíndrico e em um tanque prismático com grade oscilante. Pela primeira vez, mostra-se um estudo sistemático em uma ampla faixa de concentração de surfactante, abaixo e acima da concentração micelar crítica (CMC). Em ambos os sistemas a presença de surfactante na água reduz o coeficiente volumétrico de transferência de oxigênio. No reator cilíndrico (aeração por bolhas), observou-se a redução máxima do coeficiente de transferência de massa volumétrica (KLa) em uma concentração de laurilsulfato de sódio de 0,3 mM, antes da CMC. Os resultados são discutidos com base em interações moleculares entre água, bolhas de ar e moléculas de surfactantes. Para melhor compreender os resultados experimentais, um modelo matemático foi desenvolvido com base no coeficiente estimado de transferência de massa volumétrica. As previsões concordam bem com os resultados experimentais e apontam para uma redução máxima de 41% na KLa, independentemente da vazão de ar injetada no reator cilíndrico. O modelo foi testado com êxito na previsão de dados de KLa reportados na literatura sob a influência de diferentes surfactantes. Para os experimentos no tanque prismático com grade oscilante (aeração superficial) e presença de ácidos húmicos, um comportamento similar foi observado independentemente da velocidade de movimentação da grade. Houve, porém, grande variabilidade experimental dificultando o ajuste do modelo a esse conjunto de dados, o que poderá será compensado com a realização de experimentos em triplicata. Assim, acredita-se que estes resultados podem ser usados para prever futuros resultados experimentais. |
id |
UFTM_de961e64225ff83e8aa00c6aed6697d3 |
---|---|
oai_identifier_str |
oai:bdtd.uftm.edu.br:tede/669 |
network_acronym_str |
UFTM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository_id_str |
|
spelling |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquidoReaeração.Surfactante iônico.Transferência global de oxigênio.Inteface Arágua.SDS.Ácidos húmicosReaeration.Ionic surfactant.Overall oxygen transfer.Air-water Interface.SDS.Tratamento de Águas de Abastecimento e ResiduáriasNeste estudo, os efeitos dos surfactantes iônicos (laurilsulfato de sódio e ácido húmico) na transferência de oxigênio são investigados em um reator cilíndrico e em um tanque prismático com grade oscilante. Pela primeira vez, mostra-se um estudo sistemático em uma ampla faixa de concentração de surfactante, abaixo e acima da concentração micelar crítica (CMC). Em ambos os sistemas a presença de surfactante na água reduz o coeficiente volumétrico de transferência de oxigênio. No reator cilíndrico (aeração por bolhas), observou-se a redução máxima do coeficiente de transferência de massa volumétrica (KLa) em uma concentração de laurilsulfato de sódio de 0,3 mM, antes da CMC. Os resultados são discutidos com base em interações moleculares entre água, bolhas de ar e moléculas de surfactantes. Para melhor compreender os resultados experimentais, um modelo matemático foi desenvolvido com base no coeficiente estimado de transferência de massa volumétrica. As previsões concordam bem com os resultados experimentais e apontam para uma redução máxima de 41% na KLa, independentemente da vazão de ar injetada no reator cilíndrico. O modelo foi testado com êxito na previsão de dados de KLa reportados na literatura sob a influência de diferentes surfactantes. Para os experimentos no tanque prismático com grade oscilante (aeração superficial) e presença de ácidos húmicos, um comportamento similar foi observado independentemente da velocidade de movimentação da grade. Houve, porém, grande variabilidade experimental dificultando o ajuste do modelo a esse conjunto de dados, o que poderá será compensado com a realização de experimentos em triplicata. Assim, acredita-se que estes resultados podem ser usados para prever futuros resultados experimentais.In this study, the effects of ionic surfactants (sodium dodecyl sulfate and humic acids) in the transfer of oxygen are investigated in a cylindrical reactor and in a prismatic tank with oscillating grid. For the first time, a systematic study is shown in a wide range of surfactant concentration, below and above the critical micelle concentration (CMC). In both systems the presence of surfactant in the water reduces the volumetric coefficient of oxygen transfer. In the cylindrical reactor (bubble aeration), the maximum reduction of the volumetric mass transfer coefficient (KLa) was observed in a 0.3 mM dodecyl sodium sulfate concentration prior to CMC. The results are discussed on the basis of molecular interactions between water molecules, air bubbles and surfactant molecules. To better understand the experimental findings, a mathematical model was developed based on the estimated volumetric mass transfer coefficient. The forecasts agree well with the experimental results and point to a maximum reduction of 41% in KLa, regardless of the air flow rate into the cylindrical reactor. The model was successfully tested in the prediction of KLa data reported in the literature under the influence of different surfactants. For experiments in the prismatic tank with oscillating grid (surface aeration) and presence of humic acids, a similar behavior was observed independently of the grid oscillation frequency. There was, however, high experimental variability making it difficult to adjust the model to this data set, what could be compensated by conducting experiments at triplicate. Thus, it is believed that these results can be used to predict future experimental results.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do Triângulo MineiroPró-Reitoria de Pesquisa e Pós-GraduaçãoBrasilUFTMPrograma de Pós-Graduação em Ciência e Tecnologia AmbientalLUZ, Mario Sérgio da02998119646http://lattes.cnpq.br/3211921907360668GONÇALVES, Julio Cesar de Souza Inácio32715545878http://lattes.cnpq.br/3449617170299224MATEUS, Marcos Vinícius2019-06-10T17:14:17Z2018-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfMATEUS, Marcos Vinícius. Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido. 2018. 74f. Dissertação (Mestrado em Ciência e Tecnologia Ambiental) - Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal do Triângulo Mineiro, Uberaba, 2018.http://bdtd.uftm.edu.br/handle/tede/669porADAK, A.; BANDYOPADHYAY, M.; PAL, A. Removal of anionic surfactant from wastewater by alumina: a case study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 254, n. 1-3, p. 165-171, 2005. ALAM, M. S.; SIDDIQ, A. M.; RAGUPATHY, R.; MANDAL, A. B. Micellization and mixed micellization of cationic gemini (dimeric) surfactants and cationic conventional (monomeric) surfactants: Conductometric, dye solubilization, and surface tension studies. Journal of Dispersion Science and Technology, v. 38, n. 2, p. 280-287, 2017. AL-SOUFI, W.; PIÑEIRO, L.; NOVO, M. A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data. Journal of Colloid and Interface Science, v. 370, n. 1, p. 102-110, 2012. ALVES, S. S.; ORVALHO, S. P.; e VASCONCELOS, J. M. T. Effect of bubble contamination on rise velocity and mass transfer. Chemical Engineering Science, v. 60, n.1, p. 1-9, 2005. AMERLINCK, Y.; DE KEYSER, W.; URCHEGUI, G.; NOPENS, I. A realistic dynamic blower energy consumption model for wastewater applications. Water Science and Technology, v. 74, n. 7, p. 1561-1576, 2016. ANACKER, E. W.; GEER, R. D.; EYLAR, E. H. Dependence of micelle aggregation number on polar head structure. The Journal of Physical Chemistry, v. 75, n. 3, p. 369-374, 1971. ASADI, A.; VERMA, A.; YANG, K.; MEJABI, B. Wastewater treatment aeration process optimization: A data mining approach. Journal of environmental management, v. 203, n. 2, p. 630-639, 2016. ASCE. ASCE Standard - Measurement of Oxygen in Clear Water, ASCE/SEI 2-06, Reston, Virginia, 2007. ATTWOOD, D. Surfactant systems: their chemistry, pharmacy and biology. Springer Science & Business Media, 2012. BAKER, J. J.; CRIVELLARI, F.; GAGNON, Z.; BETENBAUGH, M. J. Microfluidic bubbler facilitates near complete mass transfer for sustainable multiphase and microbial processing. Biotechnology and bioengineering, v. 113, p. 1924-1933, 2016. BANERJEE, S.; LAKEHAL, D.; FULGOSI, M. Surface divergence models for scalar exchange between turbulent streams. International Journal of Multiphase Flow, v. 30, n. 7-8, p. 963-977, 2004. BARBOSA JÚNIOR, A. R. (1989) Desenvolvimento de metodologia para a determinação do coeficiente de reaeração dos escoamentos naturais da água com o emprego de traçador gasoso. Dissertação (Engenharia Hidráulica e Saneamento) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1989. BARNHART, M. C. An improved gas-stripping column for deoxygenating water. Journal of the North American Benthological Society, v. 14, n. 2, p. 347-350, 1995. BEHKISH, A.; LEMOINE, R.; OUKACI, R.; MORSI, B. I. Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, v. 115, n. 3, p. 157-171, 2006. BIELAWSKA, M.; CHODZIŃSKA, A.; JAŃCZUK, B.; ZDZIENNICKA, A; Determination of CTAB CMC in mixed water plus short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids and Surfaces A-Physicochemical and Engineering Aspects, v. 424, p. 81-88, 2013. BRUMLEY, B. H.; JIRKA, G. H. Near-surface turbulence in a grid-stirred tank. Journal of Fluid Mechanics, v. 183, p. 235-263, 1987. BUKUR, D. B.; DALY, J. G.; PATEL, S. A. Hydrodynamics of the three-phase slurry Fischer-Tropsch bubble column reactors. Technical report No. DOE/PC/90012-10. Texas A and M Univ., College Station, TX (USA). Dept. of Chemical Engineering, 1990. CHAPRA, S. C. Surface water-quality modeling. Long Grove, Illinois: Waveland Press, 2008. CHEN, X.; LIU, G.; FAN, H.; LI, M.; LUO, T.; QI, L.; WANG, H. Effects of surfactant contamination on oxygen mass transfer in fine bubble aeration process. Korean J. Chem. Eng. v. 30, n. 9, p. 1741-1746, 2013. CHILOM, G.; BRUNS, A. S.; RICE, J. A. Aggregation of humic acid in solution: Contributions of different fractions. Organic Geochemistry, v. 40, n. 4, p. 455-460, 2009. CHURCHILL, M. A. Effect of water temperature on stream reaeration. Journal of the Sanitary Engineering Division, v. 5, n. 87, p. 59-71, 1961. CORRÊA, L. C. (2006). Controle do processo da transferência de oxigênio em corpos hídricos. Dissertação (Ciências da Engenharia Ambiental) – Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos, 2006. 95p. COSTA, D. J. L. (2011). Estudo da influência de macro-rugosidades do leito de um canal hidráulico sobre o coeficiente de reoxigenação superficial. Dissertação (Engenharia Hidráulica e Saneamento) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2011. 111p. DAI, Y.; DENG, T.; WANG, J.; XU, K. Enhancement of oxygen gas–liquid mass transfer with colloidal gas aphron dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 240, n.1, p.165-171, 2004. DANCKWERTS, P. V. Significance of liquid-film coefficients in gas absorption. Industrial & Engineering Chemistry, v. 43, n. 6, p. 1460-1467, 1951. DAVIES, J. T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. Gas/Liquid and Liquid/Liquid Interface, Proceedings of the International Congress of Surface Activity, pp. 426–38, 1957. DE MORAES, S. L.; REZENDE, M. O. O. Determinação da concentração micelar crítica de ácidos húmicos por medidas de condutividade e espectroscopia. Química Nova, v. 27, p. 701- 705, 2004. DECKWER, W. D. Bubble Column Reactors. Chichester, England: John Wiley and Sons, 1992. DU, L.; PROKOP, A.; TANNER, R. D. Effect of bubble size on foam fractionation of ovalbumin. Biotechnology for Fuels and Chemicals, v. 98-100, p. 1075-1091, 2002. DUMONT, E.; DELMAS, H. Mass transfer enhancement of gas absorption in oil-in-water systems: a review. Chemical Engineering and Processing: Process Intensification, v. 42, n. 6, p. 419-438, 2003. ECKENFELDER, W.; BARNHART, E. L. The effect of organic substances on the transfer of oxygen from air bubbles in water. AIChE Journal, v. 7, n. 4, p. 631-634, 1961. ELMORE, H. L.; WEST, W. F. Effect of water temperature on stream aeration. J. Sanitary Eng. Div., ASCE, v. 87, n. 6, p. 59-71, 1961. ELWORTHY, P. H.; FLORENCE, T. A.; MACFARLANE, C. B. Solubilization by surface active agents and its applications in chemistry and the biological sciences. London, Ed. Chapman & Hall, 1968. EPA, United States Environmental Protection Agency. Rates, constants and kinects formulations in surface water quality modeling. 2ª ed. Athens, 1985. 455p. FENDLER, J. Catalysis in micellar and macromoleular systems. Elsevier, 2012. FERREIRA, J. A.; NASCIMENTO, O. R.; MARTIN-NETO, L. Hydrophobic interactions between spin-label 5-SASL and humic acid as revealed by ESR spectroscopy. Environmental science & technology, v. 35, n. 4, p. 761-765, 2001. FORTESCUE, G. E.; PEARSON, J. R. A. On gas absorption into a turbulent liquid. Chemical Engineering Science, v. 22, n. 9, p. 1163-1176, 1967. GARCÍA-ABUÍN, A.; GÓMEZ-DÍAZ, D.; NAVAZA, J. M.; SANJURJO, B. Effect of surfactant nature upon absorption in a bubble column. Chemical Engineering Science, v. 65, n. 15, p. 4484-4490, 2010. GERMAIN, E.; NELLES, F.; DREWS, A.; PEARCE, P.; KRAUME, M.; REID, E.; STEPHENSON, T. Biomass effects on oxygen transfer in membrane bioreactors. Water Res., v. 41, n. 5, p. 1038-1044, 2007. GHASEMI, A.; ZAHEDIASL, S. Normality tests for statistical analysis: a guide for nonstatisticians. International journal of endocrinology and metabolism, v. 10, n. 2, p. 486, 2012. GILLOT, S.; CAPELA, S.; HÉDUIT, A. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants. Water Research, v. 34, n. 2, p. 678-683, 2000. GILLOT, S.; CAPELA-MARSAL, S.; ROUSTAN, M.; HÉDUIT, A. Predicting oxygen transfer of fine bubble diffused aeration systems-model issued from dimensional analysis. Water Res., v. 39, n. 7, p. 1379-1387, 2005. GOPAL, J. S.; SHARMA, M. M. Mass transfer characteristics of low H/D bubble columns. The Canadian Journal of Chemical Engineering, v. 61, n. 4, p. 517-526, 1983. GRIFFIN, W. C. Classification of Surface-Active Agents by 'HLB'. Journal of the Society of Cosmetic Chemists, v. 1, n. 5, p. 311-326, 1949. GUALTIERI, C.; DORIA, G. P. Gas-transfer at unsheared free-surfaces. In: Fluid mechanics of environmental interfaces. Taylor & Francis, 2008. p. 147-178. GULLIVER, J. S.; HALVERSON, M. J. Air‐water gas transfer in open channels. Water Resources Research, v. 25, n. 8, p. 1783-1793, 1989. GULLIVER, J. S.; RINDELS, A. J. Measurement of air-water oxygen transfer at hydraulic structures. Journal of Hydraulic Engineering, v. 119, n. 3, p. 327-349, March. 1993. GUPTA, S.; PAL, A.; GHOSH, P. K.; BANDYOPADHYAY, M. Performance of waste activated carbon as a low-cost adsorbent for the removal of anionic surfactant from aquatic environment. Journal of Environmental Science and Health, Part A, v. 38, n. 2, p. 381-397, 2003. HARRIOTT, P. A random eddy modification of the penetration theory. Chemical Engineering Science, v. 17, n. 3, p. 149-154, 1962. HAYASE, K.; TSUBOTA, H. Sedimentary humic acid and fulvic acid as surface active substances. Geochimica et Cosmochimica Acta, v. 47, n. 5, p. 947-952, 1983. HÉBRARD, G.; DESTRAC, P.; ROUSTAN, M.; HUYARD, A.; AUDIC, J.M. Determination of the water quality correction factor α using a tracer gas method. Water Res., v. 34, n. 2, p. 684–689, 2000. HÉBRARD, G.; ZENG, J.; LOUBIÈRE, K. Effect of surfactants on liquid side mass transfer coefficients: a new insight. Chemical Engineering Journal, v. 148, n. 1, p. 132-138, 2009. HERLINA. Gas transfer at the air–water interface in a turbulent flow environment. Doctoral thesis - Inst. Hydromech., University of Karlsruhe, University Press, 2005. ISBN 3-937300- 74-0. HERLINA; JIRKA, G. H. Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank. Experiments in Fluids, v. 37, n. 3, p. 341-349, 2004. HERLINA; JIRKA, G. H. Experiments on gas transfer at the air–water interface induced by oscillating grid turbulence. Journal of Fluid Mechanics, v. 594, p. 183-208, 2008. HIGBIE, R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. AIChE Trans, v. 31, p. 365-389, 1935. HINZE, W. L. Solution chemistry of surfactants. New York, Ed Plenun Press, 1979. HUNT, J. C. R.; GRAHAM, J. M. R. Free-stream turbulence near plane boundaries. Journal of Fluid Mechanics, v. 84, n. 2, p. 209-235, 1978. JAMIALAHMADI, M.; MÜLLER‐STEINHAGEN, H. Effect of solid particles on gas holdup in bubble columns. The Canadian Journal of Chemical Engineering, v. 69, n. 1, p. 390- 393, 1991. JIMENEZ, M.; DIETRICH, N.; GRACE, J. R.; HÉBRARD, G. Oxygen mass transfer and hydrodynamic behaviour in wastewater: Determination of local impact of surfactants by visualization techniques. Water Research., v. 58, p. 111-121, 2014. JORDAN, U.; SCHUMPE, A. The gas density effect on mass transfer in bubble columns with organic liquids. Chemical Engineering Science, v. 56, n. 21, p. 6267-6272, 2001. KHAN, A. M.; SHAH, S. S. Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal-Chemical Society of Pakistan, v. 30, n. 2, p. 186-191, 2008. KLUYTMANS, J. H.; VAN WACHEM, B. G.; KUSTER, B. F.; e SCHOUTEN, J. C. Gas holdup in a slurry bubble column: influence of electrolyte and carbon particles. Industrial & engineering chemistry research, v. 40, n. 23, p. 5326-5333, 2001. KOTTI, M.; KSENTINI, I.; MANSOUR, L. B. Bubble hydrodynamic influence on oxygen transfer rate at presence of cationic and anionic surfactants in electroflotation process. Journal of Hydrodynamics, v. 25, n. 5, p. 747-754, 2013. KRENKEL, P. A.; ORLOB, G. T. Turbulent diffusion and the reaeration coefficient. Journal of the sanitary engineering division, v. 88, n. 2, p. 53-84, 1962. KRISHNA, R.; DE SWART, J. W.; ELLENBERGER, J.; MARTINA, G. B.; MARETTO, C. Gas holdup in slurry bubble columns: effect of column diameter and slurry concentrations. AIChE Journal, v. 43, n. 2, p. 311-316, 1997. KURZ, J. L. Effects of micellization on the kinetics of the hydrolysis of monoalkyl sulfates. The Journal of Physical Chemistry, v. 66, n. 11, p. 2239-2246, 1962. LAMONT, J. C.; SCOTT, D. S. An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, v. 16, n. 4, p. 513-519, 1970. LEU, H. G.; LIN, S. H.; SHYU, C. C.; LIN, C. M. Effects of Surfactants and Suspended Solids on Oxygen Transfer under Various Operating Conditions, Environmental Technology, v. 19, n. 3, p. 299-306, 1998. LEU, S. Y.; ROSSO, D.; LARSON, L. E.; STENSTROM, M. K. Real-time aeration efficiency monitoring in the activated sludge process and methods to reduce energy consumption and operating costs. Water Environment Research, v. 81, n. 12, p. 2471-2481, 2009. LEWIS, W. K.; WHITMAN, W. G. Principles of gas absorption. Industrial & Engineering Chemistry, v. 16, n. 12, p. 1215-1220, 1924. LOUBIÈRE, K.; HÉBRARD, G. Influence of liquid surface tension (surfactants) on bubble formation at rigid and flexible orifices. Chemical Engineering and Processing: Process Intensification, v. 43, n. 11, p. 1361-1369, 2004. MANIASSO, N. Ambientes micelares em química analítica. Química Nova, v. 24, n. 1, p. 87- 93, 2001. MCCLURE, D. D.; LEE, A. C.; KAVANAGH, J. M.; FLETCHER, D. F.; BARTON, G. W. Impact of surfactant addition on oxygen mass transfer in a bubble column. Chemical Engineering and Technology, v. 38, n. 1, p. 44-52, 2015. MCCREADY, M. J.; VASSILIADOU, E.; HANRATTY, T. J. Computer simulation of turbulent mass transfer at a mobile interface. AIChE Journal, v. 32, n. 7, p. 1108-1115, 1986. MCKENNA, S. P.; MCGILLIS, W. R. Surface divergence and air-water gas transfer. Gas Transfer at Water Surfaces, v. 127, p. 129-134, 2002. MCKENNA, S. P.; MCGILLIS, W. R. The role of free-surface turbulence and surfactants in air–water gas transfer. International Journal of Heat and Mass Transfer, v. 47, n. 3, p. 539- 553, 2004. METCALF, L.; EDDY, H. Wastewater Engineering: Treatment, Disposal, Reuse. McGraw-Hill International Editions, 3rd ed., New York, 1991. MINELLA, M.; DE LAURENTIIS, E.; MAURINO, V.; MINERO, C.; VIONE, D. Dark production of hydroxyl radicals by aeration of anoxic lake water. Science of the Total Environment, v. 527, p. 322-327, 2015. MITSIONIS, A. I.; VAIMAKIS, T. C. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chemical Physics Letters, v. 547, p. 110-113, 2012. MOOG, D. B.; JIRKA, G. H. Air‐water gas transfer in uniform flows with large gravel‐bed roughness. Gas Transfer at Water Surfaces, v. 127, p. 371-375, 2002. MOTARJEMI, M.; JAMESON, G. J. Mass transfer from very small bubbles—the optimum bubble size for aeration. Chemical Engineering Science, v. 33, n. 11, p. 1415-1423, 1978. NEDER, G. B. Estudo do desempenho do aerador-misturador hiperbolóide e sua aplicabilidade no tratamento de águas residuárias. Dissertação (Engenharia Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1994. 153 p. O'CONNOR, D. J.; DOBBINS, W. E. The mechanism of reaeration in natural streams. Journal of the Sanitary Engineering Division, v. 82, p. 1115-1140, 1956. ORHAN, R.; DURSUN, G. Effects of surfactants on hydrodynamics and mass transfer in a co-current downflow contacting column. Chemical Engineering Research and Design, v. 109, p. 477-485, 2016. OSUCH, E.; PODSIADŁOWSKI, S. Efficiency of pulverizing aeration on Lake Panieńskie. Limnological Review, v. 12, n. 3, p. 139-145, 2012. OZTURK, M. C.; SERRAT, F. M.; TEYMOUR, F. Optimization of aeration profiles in the activated sludge process. Chemical Engineering Science, v. 139, p. 1-14, 2016. PAINMANAKUL, P.; LOUBIÈRE, K.; HÉBRARD, G.; BUFFIÈRE, P. Study of different membrane spargers used in waste water treatment: characterisation and performance. Chemical Engineering and Processing: Process Intensification, v. 43, n. 11, p. 1347-1359, 2004. PAINMANAKUL, P.; LOUBIÈRE, K.; HÉBRARD, G.; MIETTON-PEUCHOT, M.; ROUSTAN, M. Effect of surfactants on liquid-side mass transfer coefficients. Chemical Engineering Science, v. 60, n. 22, p. 6480-6491, 2005. PELIZZETTI, E.; PRAMAURO, E. Analytical applications of organized molecular assemblies. Analytica Chimica Acta, v. 169, p. 1-29, 1985. PINO, L. Z.; SOLARI, R. B.; SIQUIER, S.; ANTONIO ESTEVEZ, L.; YEPEZ, M. M.; SAEZ, A. E. Effect of operating conditions on gas holdup in slurry bubble columns with a foaming liquid. Chemical Engineering Communications, v. 117, n. 1, p. 367-382, 1992. PLATE, E. J.; FRIEDRICH, R. Reaeration of open channel flow. In: Gas transfer at water surfaces. Springer, Dordrecht, 1984. p. 333-346. PÖPEL, H. J. Aeration and gas transfer. 2 ed. Delf University of Technology. 169 p. 1979. PÓVOA, P.; OEHMEN, A.; INOCÊNCIO, P.; MATOS, J. S.; FRAZÃO, A. Modelling energy costs for different operational strategies of a large water resource recovery facility. Water Science and Technology, v. 75, n. 9, p. 2139-2148, 2017. QASIM, S. R. Wastewater treatment plants: planning, design and operation. Holt, Rinehart and Winston, New York, 1985. QUAGLIOTTO, P.; MONTONERI, E.; TAMBONE, F.; ADANI, F.; GOBETTO, R.; VISCARDI, G. Chemicals from wastes: compost-derived humic acid-like matter as surfactant. Environmental science & technology, v. 40, n. 5, p. 1686-1692, 2006. RAMEZANI, M.; LEGG, M. J.; HAGHIGHAT, A.; LI, Z.; VIGIL, R. D.; OLSEN, M. G. Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor. Chemical Engineering Journal, v. 319, p. 288-296, 2017. REDMOND, D.T.; BOYLE, W.; EWING, L. Oxygen transfer efficiency measurements in mixed liquor using off-gas techniques. J. Water Pollut. Control Fed., v. 55, p. 1338-1347, 1983. RIZZATTI, I. M.; ZANETTE, D. R.; MELLO, L. C. Determinação potenciométrica da concentração micelar crítica de surfactantes: Uma nova aplicação metodológica no ensino de química. Química Nova, v. 32, n. 2, p. 518-521, 2009. ROSSO, D.; HUO, D.L.; STENSTROM, M.K. Effects of interfacial surfactant contamination on bubble gas transfer. Chem. Eng. Sci., v. 61, n. 16, p. 5500–5514, 2006. SALLA, M. R.; SCHULZ, H. E. Transferência de massa gás-líquido em coluna de aeração. Eng. sanit. Ambient., v. 13, n. 2, p. 189-197, 2008. SARDEING, R.; PAINMANAKUL, P.; HÉBRARD, G. Effect of surfactants on liquid-side mass transfer coefficients in gas–liquid systems: a first step to modeling. Chemical Engineering Science, v. 61, n. 19, p. 6249-6260, 2006. SARPKAYA, T. Vorticity, free surface, and surfactants. Annual review of fluid mechanics, v. 28, n. 1, p. 83-128, 1996. SAYYAADI, H.; NEMATOLLAHI, M. Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships, an experimental approach. Scientia Iranica, v. 20, n. 3, p. 535-541, 2013. SCHRAA, O.; RIEGER, L.; ALEX, J. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand. Water Science and Technology, v. 75, n. 3, p. 552-560, 2017. SHAPIRO, D. Chemistry of natural products. Paris, Vol IX, Ed. E. Lederer, 1969. SHEN, L.; TRIANTAFYLLOU, G. S.; YUE, D. K. P. Turbulent diffusion near a free surface. Journal of Fluid Mechanics, v. 407, p. 145-166, 2000. SHEN, L.; YUE, D. K. P.; TRIANTAFYLLOU, G. S. Effect of surfactants on free-surface turbulent flows. Journal of Fluid Mechanics, v. 506, p. 79-115, 2004. SHIAU, C.C. Oxigen transfer in bubble and bubbleless aeration sistems. Ph D. thesis - University of Wollongong, Departament of civil and Mining Engineering, 1995. SIMPSON, A. J.; et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften, v. 89, n. 2, p. 84-88, 2002. SOONG, Y.; HARKE, F. W.; GAMWO, I. K.; SCHEHL, R. R.; ZAROCHAK, M. F. Hydrodynamic study in a slurry-bubble-column reactor. Catalysis today, v. 35, n. 4, p. 427- 434, 1997. STEVENSON, F. J. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons, 1994. STREETER, H.W.; PHELPS, E.B. A Study of the Pollution and Natural Purification of the Ohio River. Public Health Bulletin 146. Washington, DC: USHPS, 1925. SUGIHARA, Y.; TSUMORI, H. Surface-renewal eddies at the air–water interface in oscillating-grid turbulence. 2005. In Enviromental Hydraulics and Sustainable Water Management, pp. 199–205. TAMBURRINO, A.; GULLIVER, J. S. Free‐surface turbulence and mass transfer in a channel flow. AIChE Journal, v. 48, n. 12, p. 2732-2743, 2002. THACKSTON, E. L.; KRENKEL, P. A. Reaeration prediction in natural streams. Journal of the Sanitary Engineering Division, v. 95, n. 1, p. 65-94, 1969. THEOFANOUS, T. G.; HOUZE, R. N.; BRUMFIELD, L. K. Turbulent mass transfer at free, gas-liquid interfaces, with applications to open-channel, bubble and jet flows. International Journal of Heat and Mass Transfer, v. 19, n. 6, p. 613-624, 1976. THIBODEAUX, L. J. Environmental chemodynamics: Movement of chemicals in air, water, and soil. Chichester, UK: John Wiley & Sons, 1996. THORAT, B. N.; JOSHI, J. B. Regime transition in bubble columns: experimental and predictions. Experimental Thermal and Fluid Science, v. 28, n. 5, p. 423-430, 2004. TURNEY, D. E.; SMITH, W. C.; BANERJEE, S. A measure of near‐surface fluid motions that predicts air‐water gas transfer in a wide range of conditions. Geophysical Research Letters, v. 32, n. 4, 2005. VASCONCELOS, J. M. T.; RODRIGUES, J. M. L.; ORVALHO, S. C. P.; ALVES, S. S.; MENDES, R. L.; REIS, A. Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors. Chemical Engineering Science, v. 58, p. 1431-1440, 2003. VIAL, C.; CAMARASA, E.; PONCIN, S.; WILD, G.; MIDOUX, N.; BOUILLARD, J. Study of hydrodynamic behaviour in bubble columns and external loop airlift reactors through analysis of pressure fluctuations. Chemical Engineering Science, v. 55, n. 15, p. 2957-2973, 2000. VISSER, S. A. Oxidation-reduction potentials and capillary activities of humic acids. Nature, v. 204, n. 4958, p. 581, 1964. VON SPERLING, M. Estudos e modelagem da qualidade da água de rios. Belo Horizonte: DESA/UFMG, 2007. 588p. WHITMAN, W. G. A preliminary experimental confirmation of the two-film theory of gas absorption. Chemical and Metallurgical Engineering. v. 29, n. 4, p. 146-148, 1923. WILKINSON, P. M.; SPEK, A. P.; VAN DIERENDONCK, L. L. Design parameters estimation for scale‐up of high‐pressure bubble columns. AIChE Journal, v. 38, n. 4, p. 544- 554, 1992. YUKSEL, E.; SENGIL, I. A.; OZACAR, M. The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chemical Engineering Journal, v. 152, n. 2-3, p. 347-353, 2009. ZHANG, S.; WANG, D.; BU, F.; ZHANG, X.; FAN, P. Gas–liquid mass transfer in the presence of ionic surfactant: effect of counter‐ions and interfacial turbulence. Surface and Interface Analysis, v. 45, n. 7, p. 1152-1157, 2013.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-10-15T17:41:55Zoai:bdtd.uftm.edu.br:tede/669Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-10-15T17:41:55Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false |
dc.title.none.fl_str_mv |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
title |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
spellingShingle |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido MATEUS, Marcos Vinícius Reaeração. Surfactante iônico. Transferência global de oxigênio. Inteface Arágua. SDS. Ácidos húmicos Reaeration. Ionic surfactant. Overall oxygen transfer. Air-water Interface. SDS. Tratamento de Águas de Abastecimento e Residuárias |
title_short |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
title_full |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
title_fullStr |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
title_full_unstemmed |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
title_sort |
Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido |
author |
MATEUS, Marcos Vinícius |
author_facet |
MATEUS, Marcos Vinícius |
author_role |
author |
dc.contributor.none.fl_str_mv |
LUZ, Mario Sérgio da 02998119646 http://lattes.cnpq.br/3211921907360668 GONÇALVES, Julio Cesar de Souza Inácio 32715545878 http://lattes.cnpq.br/3449617170299224 |
dc.contributor.author.fl_str_mv |
MATEUS, Marcos Vinícius |
dc.subject.por.fl_str_mv |
Reaeração. Surfactante iônico. Transferência global de oxigênio. Inteface Arágua. SDS. Ácidos húmicos Reaeration. Ionic surfactant. Overall oxygen transfer. Air-water Interface. SDS. Tratamento de Águas de Abastecimento e Residuárias |
topic |
Reaeração. Surfactante iônico. Transferência global de oxigênio. Inteface Arágua. SDS. Ácidos húmicos Reaeration. Ionic surfactant. Overall oxygen transfer. Air-water Interface. SDS. Tratamento de Águas de Abastecimento e Residuárias |
description |
Neste estudo, os efeitos dos surfactantes iônicos (laurilsulfato de sódio e ácido húmico) na transferência de oxigênio são investigados em um reator cilíndrico e em um tanque prismático com grade oscilante. Pela primeira vez, mostra-se um estudo sistemático em uma ampla faixa de concentração de surfactante, abaixo e acima da concentração micelar crítica (CMC). Em ambos os sistemas a presença de surfactante na água reduz o coeficiente volumétrico de transferência de oxigênio. No reator cilíndrico (aeração por bolhas), observou-se a redução máxima do coeficiente de transferência de massa volumétrica (KLa) em uma concentração de laurilsulfato de sódio de 0,3 mM, antes da CMC. Os resultados são discutidos com base em interações moleculares entre água, bolhas de ar e moléculas de surfactantes. Para melhor compreender os resultados experimentais, um modelo matemático foi desenvolvido com base no coeficiente estimado de transferência de massa volumétrica. As previsões concordam bem com os resultados experimentais e apontam para uma redução máxima de 41% na KLa, independentemente da vazão de ar injetada no reator cilíndrico. O modelo foi testado com êxito na previsão de dados de KLa reportados na literatura sob a influência de diferentes surfactantes. Para os experimentos no tanque prismático com grade oscilante (aeração superficial) e presença de ácidos húmicos, um comportamento similar foi observado independentemente da velocidade de movimentação da grade. Houve, porém, grande variabilidade experimental dificultando o ajuste do modelo a esse conjunto de dados, o que poderá será compensado com a realização de experimentos em triplicata. Assim, acredita-se que estes resultados podem ser usados para prever futuros resultados experimentais. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-28 2019-06-10T17:14:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MATEUS, Marcos Vinícius. Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido. 2018. 74f. Dissertação (Mestrado em Ciência e Tecnologia Ambiental) - Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal do Triângulo Mineiro, Uberaba, 2018. http://bdtd.uftm.edu.br/handle/tede/669 |
identifier_str_mv |
MATEUS, Marcos Vinícius. Efeito de surfactantes sobre o coeficiente volumétrico de transferência de massa de oxigênio da interface gás-líquido. 2018. 74f. Dissertação (Mestrado em Ciência e Tecnologia Ambiental) - Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal do Triângulo Mineiro, Uberaba, 2018. |
url |
http://bdtd.uftm.edu.br/handle/tede/669 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
ADAK, A.; BANDYOPADHYAY, M.; PAL, A. Removal of anionic surfactant from wastewater by alumina: a case study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 254, n. 1-3, p. 165-171, 2005. ALAM, M. S.; SIDDIQ, A. M.; RAGUPATHY, R.; MANDAL, A. B. Micellization and mixed micellization of cationic gemini (dimeric) surfactants and cationic conventional (monomeric) surfactants: Conductometric, dye solubilization, and surface tension studies. Journal of Dispersion Science and Technology, v. 38, n. 2, p. 280-287, 2017. AL-SOUFI, W.; PIÑEIRO, L.; NOVO, M. A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data. Journal of Colloid and Interface Science, v. 370, n. 1, p. 102-110, 2012. ALVES, S. S.; ORVALHO, S. P.; e VASCONCELOS, J. M. T. Effect of bubble contamination on rise velocity and mass transfer. Chemical Engineering Science, v. 60, n.1, p. 1-9, 2005. AMERLINCK, Y.; DE KEYSER, W.; URCHEGUI, G.; NOPENS, I. A realistic dynamic blower energy consumption model for wastewater applications. Water Science and Technology, v. 74, n. 7, p. 1561-1576, 2016. ANACKER, E. W.; GEER, R. D.; EYLAR, E. H. Dependence of micelle aggregation number on polar head structure. The Journal of Physical Chemistry, v. 75, n. 3, p. 369-374, 1971. ASADI, A.; VERMA, A.; YANG, K.; MEJABI, B. Wastewater treatment aeration process optimization: A data mining approach. Journal of environmental management, v. 203, n. 2, p. 630-639, 2016. ASCE. ASCE Standard - Measurement of Oxygen in Clear Water, ASCE/SEI 2-06, Reston, Virginia, 2007. ATTWOOD, D. Surfactant systems: their chemistry, pharmacy and biology. Springer Science & Business Media, 2012. BAKER, J. J.; CRIVELLARI, F.; GAGNON, Z.; BETENBAUGH, M. J. Microfluidic bubbler facilitates near complete mass transfer for sustainable multiphase and microbial processing. Biotechnology and bioengineering, v. 113, p. 1924-1933, 2016. BANERJEE, S.; LAKEHAL, D.; FULGOSI, M. Surface divergence models for scalar exchange between turbulent streams. International Journal of Multiphase Flow, v. 30, n. 7-8, p. 963-977, 2004. BARBOSA JÚNIOR, A. R. (1989) Desenvolvimento de metodologia para a determinação do coeficiente de reaeração dos escoamentos naturais da água com o emprego de traçador gasoso. Dissertação (Engenharia Hidráulica e Saneamento) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1989. BARNHART, M. C. An improved gas-stripping column for deoxygenating water. Journal of the North American Benthological Society, v. 14, n. 2, p. 347-350, 1995. BEHKISH, A.; LEMOINE, R.; OUKACI, R.; MORSI, B. I. Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, v. 115, n. 3, p. 157-171, 2006. BIELAWSKA, M.; CHODZIŃSKA, A.; JAŃCZUK, B.; ZDZIENNICKA, A; Determination of CTAB CMC in mixed water plus short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids and Surfaces A-Physicochemical and Engineering Aspects, v. 424, p. 81-88, 2013. BRUMLEY, B. H.; JIRKA, G. H. Near-surface turbulence in a grid-stirred tank. Journal of Fluid Mechanics, v. 183, p. 235-263, 1987. BUKUR, D. B.; DALY, J. G.; PATEL, S. A. Hydrodynamics of the three-phase slurry Fischer-Tropsch bubble column reactors. Technical report No. DOE/PC/90012-10. Texas A and M Univ., College Station, TX (USA). Dept. of Chemical Engineering, 1990. CHAPRA, S. C. Surface water-quality modeling. Long Grove, Illinois: Waveland Press, 2008. CHEN, X.; LIU, G.; FAN, H.; LI, M.; LUO, T.; QI, L.; WANG, H. Effects of surfactant contamination on oxygen mass transfer in fine bubble aeration process. Korean J. Chem. Eng. v. 30, n. 9, p. 1741-1746, 2013. CHILOM, G.; BRUNS, A. S.; RICE, J. A. Aggregation of humic acid in solution: Contributions of different fractions. Organic Geochemistry, v. 40, n. 4, p. 455-460, 2009. CHURCHILL, M. A. Effect of water temperature on stream reaeration. Journal of the Sanitary Engineering Division, v. 5, n. 87, p. 59-71, 1961. CORRÊA, L. C. (2006). Controle do processo da transferência de oxigênio em corpos hídricos. Dissertação (Ciências da Engenharia Ambiental) – Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos, 2006. 95p. COSTA, D. J. L. (2011). Estudo da influência de macro-rugosidades do leito de um canal hidráulico sobre o coeficiente de reoxigenação superficial. Dissertação (Engenharia Hidráulica e Saneamento) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2011. 111p. DAI, Y.; DENG, T.; WANG, J.; XU, K. Enhancement of oxygen gas–liquid mass transfer with colloidal gas aphron dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 240, n.1, p.165-171, 2004. DANCKWERTS, P. V. Significance of liquid-film coefficients in gas absorption. Industrial & Engineering Chemistry, v. 43, n. 6, p. 1460-1467, 1951. DAVIES, J. T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. Gas/Liquid and Liquid/Liquid Interface, Proceedings of the International Congress of Surface Activity, pp. 426–38, 1957. DE MORAES, S. L.; REZENDE, M. O. O. Determinação da concentração micelar crítica de ácidos húmicos por medidas de condutividade e espectroscopia. Química Nova, v. 27, p. 701- 705, 2004. DECKWER, W. D. Bubble Column Reactors. Chichester, England: John Wiley and Sons, 1992. DU, L.; PROKOP, A.; TANNER, R. D. Effect of bubble size on foam fractionation of ovalbumin. Biotechnology for Fuels and Chemicals, v. 98-100, p. 1075-1091, 2002. DUMONT, E.; DELMAS, H. Mass transfer enhancement of gas absorption in oil-in-water systems: a review. Chemical Engineering and Processing: Process Intensification, v. 42, n. 6, p. 419-438, 2003. ECKENFELDER, W.; BARNHART, E. L. The effect of organic substances on the transfer of oxygen from air bubbles in water. AIChE Journal, v. 7, n. 4, p. 631-634, 1961. ELMORE, H. L.; WEST, W. F. Effect of water temperature on stream aeration. J. Sanitary Eng. Div., ASCE, v. 87, n. 6, p. 59-71, 1961. ELWORTHY, P. H.; FLORENCE, T. A.; MACFARLANE, C. B. Solubilization by surface active agents and its applications in chemistry and the biological sciences. London, Ed. Chapman & Hall, 1968. EPA, United States Environmental Protection Agency. Rates, constants and kinects formulations in surface water quality modeling. 2ª ed. Athens, 1985. 455p. FENDLER, J. Catalysis in micellar and macromoleular systems. Elsevier, 2012. FERREIRA, J. A.; NASCIMENTO, O. R.; MARTIN-NETO, L. Hydrophobic interactions between spin-label 5-SASL and humic acid as revealed by ESR spectroscopy. Environmental science & technology, v. 35, n. 4, p. 761-765, 2001. FORTESCUE, G. E.; PEARSON, J. R. A. On gas absorption into a turbulent liquid. Chemical Engineering Science, v. 22, n. 9, p. 1163-1176, 1967. GARCÍA-ABUÍN, A.; GÓMEZ-DÍAZ, D.; NAVAZA, J. M.; SANJURJO, B. Effect of surfactant nature upon absorption in a bubble column. Chemical Engineering Science, v. 65, n. 15, p. 4484-4490, 2010. GERMAIN, E.; NELLES, F.; DREWS, A.; PEARCE, P.; KRAUME, M.; REID, E.; STEPHENSON, T. Biomass effects on oxygen transfer in membrane bioreactors. Water Res., v. 41, n. 5, p. 1038-1044, 2007. GHASEMI, A.; ZAHEDIASL, S. Normality tests for statistical analysis: a guide for nonstatisticians. International journal of endocrinology and metabolism, v. 10, n. 2, p. 486, 2012. GILLOT, S.; CAPELA, S.; HÉDUIT, A. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants. Water Research, v. 34, n. 2, p. 678-683, 2000. GILLOT, S.; CAPELA-MARSAL, S.; ROUSTAN, M.; HÉDUIT, A. Predicting oxygen transfer of fine bubble diffused aeration systems-model issued from dimensional analysis. Water Res., v. 39, n. 7, p. 1379-1387, 2005. GOPAL, J. S.; SHARMA, M. M. Mass transfer characteristics of low H/D bubble columns. The Canadian Journal of Chemical Engineering, v. 61, n. 4, p. 517-526, 1983. GRIFFIN, W. C. Classification of Surface-Active Agents by 'HLB'. Journal of the Society of Cosmetic Chemists, v. 1, n. 5, p. 311-326, 1949. GUALTIERI, C.; DORIA, G. P. Gas-transfer at unsheared free-surfaces. In: Fluid mechanics of environmental interfaces. Taylor & Francis, 2008. p. 147-178. GULLIVER, J. S.; HALVERSON, M. J. Air‐water gas transfer in open channels. Water Resources Research, v. 25, n. 8, p. 1783-1793, 1989. GULLIVER, J. S.; RINDELS, A. J. Measurement of air-water oxygen transfer at hydraulic structures. Journal of Hydraulic Engineering, v. 119, n. 3, p. 327-349, March. 1993. GUPTA, S.; PAL, A.; GHOSH, P. K.; BANDYOPADHYAY, M. Performance of waste activated carbon as a low-cost adsorbent for the removal of anionic surfactant from aquatic environment. Journal of Environmental Science and Health, Part A, v. 38, n. 2, p. 381-397, 2003. HARRIOTT, P. A random eddy modification of the penetration theory. Chemical Engineering Science, v. 17, n. 3, p. 149-154, 1962. HAYASE, K.; TSUBOTA, H. Sedimentary humic acid and fulvic acid as surface active substances. Geochimica et Cosmochimica Acta, v. 47, n. 5, p. 947-952, 1983. HÉBRARD, G.; DESTRAC, P.; ROUSTAN, M.; HUYARD, A.; AUDIC, J.M. Determination of the water quality correction factor α using a tracer gas method. Water Res., v. 34, n. 2, p. 684–689, 2000. HÉBRARD, G.; ZENG, J.; LOUBIÈRE, K. Effect of surfactants on liquid side mass transfer coefficients: a new insight. Chemical Engineering Journal, v. 148, n. 1, p. 132-138, 2009. HERLINA. Gas transfer at the air–water interface in a turbulent flow environment. Doctoral thesis - Inst. Hydromech., University of Karlsruhe, University Press, 2005. ISBN 3-937300- 74-0. HERLINA; JIRKA, G. H. Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank. Experiments in Fluids, v. 37, n. 3, p. 341-349, 2004. HERLINA; JIRKA, G. H. Experiments on gas transfer at the air–water interface induced by oscillating grid turbulence. Journal of Fluid Mechanics, v. 594, p. 183-208, 2008. HIGBIE, R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. AIChE Trans, v. 31, p. 365-389, 1935. HINZE, W. L. Solution chemistry of surfactants. New York, Ed Plenun Press, 1979. HUNT, J. C. R.; GRAHAM, J. M. R. Free-stream turbulence near plane boundaries. Journal of Fluid Mechanics, v. 84, n. 2, p. 209-235, 1978. JAMIALAHMADI, M.; MÜLLER‐STEINHAGEN, H. Effect of solid particles on gas holdup in bubble columns. The Canadian Journal of Chemical Engineering, v. 69, n. 1, p. 390- 393, 1991. JIMENEZ, M.; DIETRICH, N.; GRACE, J. R.; HÉBRARD, G. Oxygen mass transfer and hydrodynamic behaviour in wastewater: Determination of local impact of surfactants by visualization techniques. Water Research., v. 58, p. 111-121, 2014. JORDAN, U.; SCHUMPE, A. The gas density effect on mass transfer in bubble columns with organic liquids. Chemical Engineering Science, v. 56, n. 21, p. 6267-6272, 2001. KHAN, A. M.; SHAH, S. S. Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal-Chemical Society of Pakistan, v. 30, n. 2, p. 186-191, 2008. KLUYTMANS, J. H.; VAN WACHEM, B. G.; KUSTER, B. F.; e SCHOUTEN, J. C. Gas holdup in a slurry bubble column: influence of electrolyte and carbon particles. Industrial & engineering chemistry research, v. 40, n. 23, p. 5326-5333, 2001. KOTTI, M.; KSENTINI, I.; MANSOUR, L. B. Bubble hydrodynamic influence on oxygen transfer rate at presence of cationic and anionic surfactants in electroflotation process. Journal of Hydrodynamics, v. 25, n. 5, p. 747-754, 2013. KRENKEL, P. A.; ORLOB, G. T. Turbulent diffusion and the reaeration coefficient. Journal of the sanitary engineering division, v. 88, n. 2, p. 53-84, 1962. KRISHNA, R.; DE SWART, J. W.; ELLENBERGER, J.; MARTINA, G. B.; MARETTO, C. Gas holdup in slurry bubble columns: effect of column diameter and slurry concentrations. AIChE Journal, v. 43, n. 2, p. 311-316, 1997. KURZ, J. L. Effects of micellization on the kinetics of the hydrolysis of monoalkyl sulfates. The Journal of Physical Chemistry, v. 66, n. 11, p. 2239-2246, 1962. LAMONT, J. C.; SCOTT, D. S. An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, v. 16, n. 4, p. 513-519, 1970. LEU, H. G.; LIN, S. H.; SHYU, C. C.; LIN, C. M. Effects of Surfactants and Suspended Solids on Oxygen Transfer under Various Operating Conditions, Environmental Technology, v. 19, n. 3, p. 299-306, 1998. LEU, S. Y.; ROSSO, D.; LARSON, L. E.; STENSTROM, M. K. Real-time aeration efficiency monitoring in the activated sludge process and methods to reduce energy consumption and operating costs. Water Environment Research, v. 81, n. 12, p. 2471-2481, 2009. LEWIS, W. K.; WHITMAN, W. G. Principles of gas absorption. Industrial & Engineering Chemistry, v. 16, n. 12, p. 1215-1220, 1924. LOUBIÈRE, K.; HÉBRARD, G. Influence of liquid surface tension (surfactants) on bubble formation at rigid and flexible orifices. Chemical Engineering and Processing: Process Intensification, v. 43, n. 11, p. 1361-1369, 2004. MANIASSO, N. Ambientes micelares em química analítica. Química Nova, v. 24, n. 1, p. 87- 93, 2001. MCCLURE, D. D.; LEE, A. C.; KAVANAGH, J. M.; FLETCHER, D. F.; BARTON, G. W. Impact of surfactant addition on oxygen mass transfer in a bubble column. Chemical Engineering and Technology, v. 38, n. 1, p. 44-52, 2015. MCCREADY, M. J.; VASSILIADOU, E.; HANRATTY, T. J. Computer simulation of turbulent mass transfer at a mobile interface. AIChE Journal, v. 32, n. 7, p. 1108-1115, 1986. MCKENNA, S. P.; MCGILLIS, W. R. Surface divergence and air-water gas transfer. Gas Transfer at Water Surfaces, v. 127, p. 129-134, 2002. MCKENNA, S. P.; MCGILLIS, W. R. The role of free-surface turbulence and surfactants in air–water gas transfer. International Journal of Heat and Mass Transfer, v. 47, n. 3, p. 539- 553, 2004. METCALF, L.; EDDY, H. Wastewater Engineering: Treatment, Disposal, Reuse. McGraw-Hill International Editions, 3rd ed., New York, 1991. MINELLA, M.; DE LAURENTIIS, E.; MAURINO, V.; MINERO, C.; VIONE, D. Dark production of hydroxyl radicals by aeration of anoxic lake water. Science of the Total Environment, v. 527, p. 322-327, 2015. MITSIONIS, A. I.; VAIMAKIS, T. C. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chemical Physics Letters, v. 547, p. 110-113, 2012. MOOG, D. B.; JIRKA, G. H. Air‐water gas transfer in uniform flows with large gravel‐bed roughness. Gas Transfer at Water Surfaces, v. 127, p. 371-375, 2002. MOTARJEMI, M.; JAMESON, G. J. Mass transfer from very small bubbles—the optimum bubble size for aeration. Chemical Engineering Science, v. 33, n. 11, p. 1415-1423, 1978. NEDER, G. B. Estudo do desempenho do aerador-misturador hiperbolóide e sua aplicabilidade no tratamento de águas residuárias. Dissertação (Engenharia Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1994. 153 p. O'CONNOR, D. J.; DOBBINS, W. E. The mechanism of reaeration in natural streams. Journal of the Sanitary Engineering Division, v. 82, p. 1115-1140, 1956. ORHAN, R.; DURSUN, G. Effects of surfactants on hydrodynamics and mass transfer in a co-current downflow contacting column. Chemical Engineering Research and Design, v. 109, p. 477-485, 2016. OSUCH, E.; PODSIADŁOWSKI, S. Efficiency of pulverizing aeration on Lake Panieńskie. Limnological Review, v. 12, n. 3, p. 139-145, 2012. OZTURK, M. C.; SERRAT, F. M.; TEYMOUR, F. Optimization of aeration profiles in the activated sludge process. Chemical Engineering Science, v. 139, p. 1-14, 2016. PAINMANAKUL, P.; LOUBIÈRE, K.; HÉBRARD, G.; BUFFIÈRE, P. Study of different membrane spargers used in waste water treatment: characterisation and performance. Chemical Engineering and Processing: Process Intensification, v. 43, n. 11, p. 1347-1359, 2004. PAINMANAKUL, P.; LOUBIÈRE, K.; HÉBRARD, G.; MIETTON-PEUCHOT, M.; ROUSTAN, M. Effect of surfactants on liquid-side mass transfer coefficients. Chemical Engineering Science, v. 60, n. 22, p. 6480-6491, 2005. PELIZZETTI, E.; PRAMAURO, E. Analytical applications of organized molecular assemblies. Analytica Chimica Acta, v. 169, p. 1-29, 1985. PINO, L. Z.; SOLARI, R. B.; SIQUIER, S.; ANTONIO ESTEVEZ, L.; YEPEZ, M. M.; SAEZ, A. E. Effect of operating conditions on gas holdup in slurry bubble columns with a foaming liquid. Chemical Engineering Communications, v. 117, n. 1, p. 367-382, 1992. PLATE, E. J.; FRIEDRICH, R. Reaeration of open channel flow. In: Gas transfer at water surfaces. Springer, Dordrecht, 1984. p. 333-346. PÖPEL, H. J. Aeration and gas transfer. 2 ed. Delf University of Technology. 169 p. 1979. PÓVOA, P.; OEHMEN, A.; INOCÊNCIO, P.; MATOS, J. S.; FRAZÃO, A. Modelling energy costs for different operational strategies of a large water resource recovery facility. Water Science and Technology, v. 75, n. 9, p. 2139-2148, 2017. QASIM, S. R. Wastewater treatment plants: planning, design and operation. Holt, Rinehart and Winston, New York, 1985. QUAGLIOTTO, P.; MONTONERI, E.; TAMBONE, F.; ADANI, F.; GOBETTO, R.; VISCARDI, G. Chemicals from wastes: compost-derived humic acid-like matter as surfactant. Environmental science & technology, v. 40, n. 5, p. 1686-1692, 2006. RAMEZANI, M.; LEGG, M. J.; HAGHIGHAT, A.; LI, Z.; VIGIL, R. D.; OLSEN, M. G. Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor. Chemical Engineering Journal, v. 319, p. 288-296, 2017. REDMOND, D.T.; BOYLE, W.; EWING, L. Oxygen transfer efficiency measurements in mixed liquor using off-gas techniques. J. Water Pollut. Control Fed., v. 55, p. 1338-1347, 1983. RIZZATTI, I. M.; ZANETTE, D. R.; MELLO, L. C. Determinação potenciométrica da concentração micelar crítica de surfactantes: Uma nova aplicação metodológica no ensino de química. Química Nova, v. 32, n. 2, p. 518-521, 2009. ROSSO, D.; HUO, D.L.; STENSTROM, M.K. Effects of interfacial surfactant contamination on bubble gas transfer. Chem. Eng. Sci., v. 61, n. 16, p. 5500–5514, 2006. SALLA, M. R.; SCHULZ, H. E. Transferência de massa gás-líquido em coluna de aeração. Eng. sanit. Ambient., v. 13, n. 2, p. 189-197, 2008. SARDEING, R.; PAINMANAKUL, P.; HÉBRARD, G. Effect of surfactants on liquid-side mass transfer coefficients in gas–liquid systems: a first step to modeling. Chemical Engineering Science, v. 61, n. 19, p. 6249-6260, 2006. SARPKAYA, T. Vorticity, free surface, and surfactants. Annual review of fluid mechanics, v. 28, n. 1, p. 83-128, 1996. SAYYAADI, H.; NEMATOLLAHI, M. Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships, an experimental approach. Scientia Iranica, v. 20, n. 3, p. 535-541, 2013. SCHRAA, O.; RIEGER, L.; ALEX, J. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand. Water Science and Technology, v. 75, n. 3, p. 552-560, 2017. SHAPIRO, D. Chemistry of natural products. Paris, Vol IX, Ed. E. Lederer, 1969. SHEN, L.; TRIANTAFYLLOU, G. S.; YUE, D. K. P. Turbulent diffusion near a free surface. Journal of Fluid Mechanics, v. 407, p. 145-166, 2000. SHEN, L.; YUE, D. K. P.; TRIANTAFYLLOU, G. S. Effect of surfactants on free-surface turbulent flows. Journal of Fluid Mechanics, v. 506, p. 79-115, 2004. SHIAU, C.C. Oxigen transfer in bubble and bubbleless aeration sistems. Ph D. thesis - University of Wollongong, Departament of civil and Mining Engineering, 1995. SIMPSON, A. J.; et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften, v. 89, n. 2, p. 84-88, 2002. SOONG, Y.; HARKE, F. W.; GAMWO, I. K.; SCHEHL, R. R.; ZAROCHAK, M. F. Hydrodynamic study in a slurry-bubble-column reactor. Catalysis today, v. 35, n. 4, p. 427- 434, 1997. STEVENSON, F. J. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons, 1994. STREETER, H.W.; PHELPS, E.B. A Study of the Pollution and Natural Purification of the Ohio River. Public Health Bulletin 146. Washington, DC: USHPS, 1925. SUGIHARA, Y.; TSUMORI, H. Surface-renewal eddies at the air–water interface in oscillating-grid turbulence. 2005. In Enviromental Hydraulics and Sustainable Water Management, pp. 199–205. TAMBURRINO, A.; GULLIVER, J. S. Free‐surface turbulence and mass transfer in a channel flow. AIChE Journal, v. 48, n. 12, p. 2732-2743, 2002. THACKSTON, E. L.; KRENKEL, P. A. Reaeration prediction in natural streams. Journal of the Sanitary Engineering Division, v. 95, n. 1, p. 65-94, 1969. THEOFANOUS, T. G.; HOUZE, R. N.; BRUMFIELD, L. K. Turbulent mass transfer at free, gas-liquid interfaces, with applications to open-channel, bubble and jet flows. International Journal of Heat and Mass Transfer, v. 19, n. 6, p. 613-624, 1976. THIBODEAUX, L. J. Environmental chemodynamics: Movement of chemicals in air, water, and soil. Chichester, UK: John Wiley & Sons, 1996. THORAT, B. N.; JOSHI, J. B. Regime transition in bubble columns: experimental and predictions. Experimental Thermal and Fluid Science, v. 28, n. 5, p. 423-430, 2004. TURNEY, D. E.; SMITH, W. C.; BANERJEE, S. A measure of near‐surface fluid motions that predicts air‐water gas transfer in a wide range of conditions. Geophysical Research Letters, v. 32, n. 4, 2005. VASCONCELOS, J. M. T.; RODRIGUES, J. M. L.; ORVALHO, S. C. P.; ALVES, S. S.; MENDES, R. L.; REIS, A. Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors. Chemical Engineering Science, v. 58, p. 1431-1440, 2003. VIAL, C.; CAMARASA, E.; PONCIN, S.; WILD, G.; MIDOUX, N.; BOUILLARD, J. Study of hydrodynamic behaviour in bubble columns and external loop airlift reactors through analysis of pressure fluctuations. Chemical Engineering Science, v. 55, n. 15, p. 2957-2973, 2000. VISSER, S. A. Oxidation-reduction potentials and capillary activities of humic acids. Nature, v. 204, n. 4958, p. 581, 1964. VON SPERLING, M. Estudos e modelagem da qualidade da água de rios. Belo Horizonte: DESA/UFMG, 2007. 588p. WHITMAN, W. G. A preliminary experimental confirmation of the two-film theory of gas absorption. Chemical and Metallurgical Engineering. v. 29, n. 4, p. 146-148, 1923. WILKINSON, P. M.; SPEK, A. P.; VAN DIERENDONCK, L. L. Design parameters estimation for scale‐up of high‐pressure bubble columns. AIChE Journal, v. 38, n. 4, p. 544- 554, 1992. YUKSEL, E.; SENGIL, I. A.; OZACAR, M. The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chemical Engineering Journal, v. 152, n. 2-3, p. 347-353, 2009. ZHANG, S.; WANG, D.; BU, F.; ZHANG, X.; FAN, P. Gas–liquid mass transfer in the presence of ionic surfactant: effect of counter‐ions and interfacial turbulence. Surface and Interface Analysis, v. 45, n. 7, p. 1152-1157, 2013. |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Pró-Reitoria de Pesquisa e Pós-Graduação Brasil UFTM Programa de Pós-Graduação em Ciência e Tecnologia Ambiental |
publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Pró-Reitoria de Pesquisa e Pós-Graduação Brasil UFTM Programa de Pós-Graduação em Ciência e Tecnologia Ambiental |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFTM instname:Universidade Federal do Triangulo Mineiro (UFTM) instacron:UFTM |
instname_str |
Universidade Federal do Triangulo Mineiro (UFTM) |
instacron_str |
UFTM |
institution |
UFTM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
collection |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM) |
repository.mail.fl_str_mv |
bdtd@uftm.edu.br||bdtd@uftm.edu.br |
_version_ |
1813013334408036352 |