Influence of ceramic primers on microshear bond strength to zirconia

Detalhes bibliográficos
Autor(a) principal: Raymundy Lago, Carlo Theodoro
Data de Publicação: 2022
Outros Autores: Tozatti Lago, Bruna Luiza, João Paulo De Carli, Farina, Ana Paula
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bioscience journal (Online)
Texto Completo: https://seer.ufu.br/index.php/biosciencejournal/article/view/59850
Resumo: This study aimed to investigate the effect of two ceramic primers on the microshear bond strength (µSBS) of yttria-stabilized zirconia (Y-TZP) to two types of self-adhesive resin cement and one BisGMA-based resin cement. Zirconia specimens were sandblasted with 27-µm aluminum oxide and composite cylinders were cemented with resin cement with or without the prior use of ceramic primers. Nine groups (n=12) were randomly distributed according to the cement (self-adhesive RelyX U200/3M ESPE, self-adhesive Maxcem Elite/Kerr, and BisGMA-based dual-cure RelyX ARC/3M ESPE) and ceramic primer (Z-Primer Plus/Bisco and Porcelain Liner M/Sun Medical Co.). After luting, the specimens were stored in distilled water at 37°C for 24 hours and then submitted to the µSBS test. The data were analyzed with two-way ANOVA followed by the Scheffe post hoc test (p<0.05). There were significant differences between RelyX U200 and other groups. There were also significant differences between the RelyX U200 group without ceramic primer and other groups without ceramic primers (p<0.05). Self-adhesive resin cement (RelyX U200 and MaxCem) presented higher microshear bond strength (6.17 and 2.32 MPa) than the conventional resin cement (RelyX ARC) when a porcelain primer was not used (0.43 MPa). When using Porcelain Liner M, the results of RelyX ARC (2.94 MPa) were equivalent to the results of self-adhesive cement (3.93 and 2.11 MPa). When using Z-Prime Plus, the results of MaxCem (5.36 MPa) were lower than those of RelyX U200 (9.59 MPa) but equivalent to those of RelyX ARC (6.07 MPa). When using the RelyX ARC, the use of both ceramic primers improved bond strength to zirconia. When using self-adhesive resin cement, Z-Prime Plus improved microshear bond strength values. It can be concluded that, after 24 hours, the highest µSBS results were obtained when using Z-Prime Plus and RelyX U200 self-adhesive cement.
id UFU-14_e9da8d8a1fb31f7a8060b9b00a88ee4a
oai_identifier_str oai:ojs.www.seer.ufu.br:article/59850
network_acronym_str UFU-14
network_name_str Bioscience journal (Online)
repository_id_str
spelling Influence of ceramic primers on microshear bond strength to zirconiaCeramicsDental prothesisShear strength.This study aimed to investigate the effect of two ceramic primers on the microshear bond strength (µSBS) of yttria-stabilized zirconia (Y-TZP) to two types of self-adhesive resin cement and one BisGMA-based resin cement. Zirconia specimens were sandblasted with 27-µm aluminum oxide and composite cylinders were cemented with resin cement with or without the prior use of ceramic primers. Nine groups (n=12) were randomly distributed according to the cement (self-adhesive RelyX U200/3M ESPE, self-adhesive Maxcem Elite/Kerr, and BisGMA-based dual-cure RelyX ARC/3M ESPE) and ceramic primer (Z-Primer Plus/Bisco and Porcelain Liner M/Sun Medical Co.). After luting, the specimens were stored in distilled water at 37°C for 24 hours and then submitted to the µSBS test. The data were analyzed with two-way ANOVA followed by the Scheffe post hoc test (p<0.05). There were significant differences between RelyX U200 and other groups. There were also significant differences between the RelyX U200 group without ceramic primer and other groups without ceramic primers (p<0.05). Self-adhesive resin cement (RelyX U200 and MaxCem) presented higher microshear bond strength (6.17 and 2.32 MPa) than the conventional resin cement (RelyX ARC) when a porcelain primer was not used (0.43 MPa). When using Porcelain Liner M, the results of RelyX ARC (2.94 MPa) were equivalent to the results of self-adhesive cement (3.93 and 2.11 MPa). When using Z-Prime Plus, the results of MaxCem (5.36 MPa) were lower than those of RelyX U200 (9.59 MPa) but equivalent to those of RelyX ARC (6.07 MPa). When using the RelyX ARC, the use of both ceramic primers improved bond strength to zirconia. When using self-adhesive resin cement, Z-Prime Plus improved microshear bond strength values. It can be concluded that, after 24 hours, the highest µSBS results were obtained when using Z-Prime Plus and RelyX U200 self-adhesive cement.EDUFU2022-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/5985010.14393/BJ-v38n0a2022-59850Bioscience Journal ; Vol. 38 (2022): Continuous Publication; e38035Bioscience Journal ; v. 38 (2022): Continuous Publication; e380351981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/59850/34373Brazil; Contemporary Copyright (c) 2022 Carlo Theodoro Raymundy Lago, Bruna Luiza Tozatti Lago, João Paulo De Carli, Ana Paula Farinahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRaymundy Lago, Carlo TheodoroTozatti Lago, Bruna LuizaJoão Paulo De CarliFarina, Ana Paula2022-07-29T11:19:56Zoai:ojs.www.seer.ufu.br:article/59850Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-07-29T11:19:56Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Influence of ceramic primers on microshear bond strength to zirconia
title Influence of ceramic primers on microshear bond strength to zirconia
spellingShingle Influence of ceramic primers on microshear bond strength to zirconia
Raymundy Lago, Carlo Theodoro
Ceramics
Dental prothesis
Shear strength.
title_short Influence of ceramic primers on microshear bond strength to zirconia
title_full Influence of ceramic primers on microshear bond strength to zirconia
title_fullStr Influence of ceramic primers on microshear bond strength to zirconia
title_full_unstemmed Influence of ceramic primers on microshear bond strength to zirconia
title_sort Influence of ceramic primers on microshear bond strength to zirconia
author Raymundy Lago, Carlo Theodoro
author_facet Raymundy Lago, Carlo Theodoro
Tozatti Lago, Bruna Luiza
João Paulo De Carli
Farina, Ana Paula
author_role author
author2 Tozatti Lago, Bruna Luiza
João Paulo De Carli
Farina, Ana Paula
author2_role author
author
author
dc.contributor.author.fl_str_mv Raymundy Lago, Carlo Theodoro
Tozatti Lago, Bruna Luiza
João Paulo De Carli
Farina, Ana Paula
dc.subject.por.fl_str_mv Ceramics
Dental prothesis
Shear strength.
topic Ceramics
Dental prothesis
Shear strength.
description This study aimed to investigate the effect of two ceramic primers on the microshear bond strength (µSBS) of yttria-stabilized zirconia (Y-TZP) to two types of self-adhesive resin cement and one BisGMA-based resin cement. Zirconia specimens were sandblasted with 27-µm aluminum oxide and composite cylinders were cemented with resin cement with or without the prior use of ceramic primers. Nine groups (n=12) were randomly distributed according to the cement (self-adhesive RelyX U200/3M ESPE, self-adhesive Maxcem Elite/Kerr, and BisGMA-based dual-cure RelyX ARC/3M ESPE) and ceramic primer (Z-Primer Plus/Bisco and Porcelain Liner M/Sun Medical Co.). After luting, the specimens were stored in distilled water at 37°C for 24 hours and then submitted to the µSBS test. The data were analyzed with two-way ANOVA followed by the Scheffe post hoc test (p<0.05). There were significant differences between RelyX U200 and other groups. There were also significant differences between the RelyX U200 group without ceramic primer and other groups without ceramic primers (p<0.05). Self-adhesive resin cement (RelyX U200 and MaxCem) presented higher microshear bond strength (6.17 and 2.32 MPa) than the conventional resin cement (RelyX ARC) when a porcelain primer was not used (0.43 MPa). When using Porcelain Liner M, the results of RelyX ARC (2.94 MPa) were equivalent to the results of self-adhesive cement (3.93 and 2.11 MPa). When using Z-Prime Plus, the results of MaxCem (5.36 MPa) were lower than those of RelyX U200 (9.59 MPa) but equivalent to those of RelyX ARC (6.07 MPa). When using the RelyX ARC, the use of both ceramic primers improved bond strength to zirconia. When using self-adhesive resin cement, Z-Prime Plus improved microshear bond strength values. It can be concluded that, after 24 hours, the highest µSBS results were obtained when using Z-Prime Plus and RelyX U200 self-adhesive cement.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/59850
10.14393/BJ-v38n0a2022-59850
url https://seer.ufu.br/index.php/biosciencejournal/article/view/59850
identifier_str_mv 10.14393/BJ-v38n0a2022-59850
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/59850/34373
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Brazil; Contemporary
dc.publisher.none.fl_str_mv EDUFU
publisher.none.fl_str_mv EDUFU
dc.source.none.fl_str_mv Bioscience Journal ; Vol. 38 (2022): Continuous Publication; e38035
Bioscience Journal ; v. 38 (2022): Continuous Publication; e38035
1981-3163
reponame:Bioscience journal (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Bioscience journal (Online)
collection Bioscience journal (Online)
repository.name.fl_str_mv Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv biosciencej@ufu.br||
_version_ 1797069082982350848