Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......

Detalhes bibliográficos
Autor(a) principal: Ahmad, Farooq
Data de Publicação: 2012
Tipo de documento: Artigo
Idioma: por
Título da fonte: Sociedade & natureza (Online)
Texto Completo: https://seer.ufu.br/index.php/sociedadenatureza/article/view/17893
Resumo: Detection of change is the measure of the distinct data framework and thematic change information that can direct to more tangible insights into underlying process involving land cover and landuse changes. Monitoring the locations and distributions of land cover changes is important for establishing links between policy decisions, regulatory actions and subsequent landuse activities. Change detection is the process that helps in determining the changes associated with landuse and land cover properties with reference to geo-registered multi-temporal remote sensing information. It assists in identifying change between two or more dates that is uncharacterized of normal variation. After image to image registrations, the normalized difference vegetation index (NDVI), the transformed normalized difference vegetation index (TNDVI), the enhanced vegetation index (EVI) and the soil-adjusted vegetation index (SAVI) values were derived from Landsat ETM+ dataset and an image differencing algorithm was applied to detect changes. This paper presents an application of the use of multi-temporal Landsat ETM+ images and multi-spectral MODIS (Terra) EVI/NDVI time-series vegetation phenology metrics for the District Sargodha. The results can be utilized as a temporal landuse change model for Punjab province of Pakistan to quantify the extent and nature of change and assist in future prediction studies. This will support environmental planning to develop sustainable landuse practices.
id UFU-6_2583bed98dc4fcca02fd33691de4a7c9
oai_identifier_str oai:ojs.www.seer.ufu.br:article/17893
network_acronym_str UFU-6
network_name_str Sociedade & natureza (Online)
repository_id_str
spelling Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......Change detectionEVILandsatmulti-temporalmulti-spectralNDVIPakistanDetection of change is the measure of the distinct data framework and thematic change information that can direct to more tangible insights into underlying process involving land cover and landuse changes. Monitoring the locations and distributions of land cover changes is important for establishing links between policy decisions, regulatory actions and subsequent landuse activities. Change detection is the process that helps in determining the changes associated with landuse and land cover properties with reference to geo-registered multi-temporal remote sensing information. It assists in identifying change between two or more dates that is uncharacterized of normal variation. After image to image registrations, the normalized difference vegetation index (NDVI), the transformed normalized difference vegetation index (TNDVI), the enhanced vegetation index (EVI) and the soil-adjusted vegetation index (SAVI) values were derived from Landsat ETM+ dataset and an image differencing algorithm was applied to detect changes. This paper presents an application of the use of multi-temporal Landsat ETM+ images and multi-spectral MODIS (Terra) EVI/NDVI time-series vegetation phenology metrics for the District Sargodha. The results can be utilized as a temporal landuse change model for Punjab province of Pakistan to quantify the extent and nature of change and assist in future prediction studies. This will support environmental planning to develop sustainable landuse practices.Universidade Federal de Uberlândia2012-12-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/17893Sociedade & Natureza; Vol. 24 No. 3 (2012)Sociedade & Natureza; v. 24 n. 3 (2012)1982-45130103-1570reponame:Sociedade & natureza (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/17893/pdfAhmad, Farooqinfo:eu-repo/semantics/openAccess2021-04-30T14:06:26Zoai:ojs.www.seer.ufu.br:article/17893Revistahttp://www.sociedadenatureza.ig.ufu.br/PUBhttps://seer.ufu.br/index.php/sociedadenatureza/oai||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br1982-45130103-1570opendoar:2021-04-30T14:06:26Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
title Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
spellingShingle Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
Ahmad, Farooq
Change detection
EVI
Landsat
multi-temporal
multi-spectral
NDVI
Pakistan
title_short Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
title_full Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
title_fullStr Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
title_full_unstemmed Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
title_sort Detection of change in vegetation cover using multi-spectral and multi-temporal information for District Sargodha, Pakistan / Detecção de alteração na cobertura vegetal com uso de informação multiespectral e multitemporal para o Distrito de Sargodha......
author Ahmad, Farooq
author_facet Ahmad, Farooq
author_role author
dc.contributor.author.fl_str_mv Ahmad, Farooq
dc.subject.por.fl_str_mv Change detection
EVI
Landsat
multi-temporal
multi-spectral
NDVI
Pakistan
topic Change detection
EVI
Landsat
multi-temporal
multi-spectral
NDVI
Pakistan
description Detection of change is the measure of the distinct data framework and thematic change information that can direct to more tangible insights into underlying process involving land cover and landuse changes. Monitoring the locations and distributions of land cover changes is important for establishing links between policy decisions, regulatory actions and subsequent landuse activities. Change detection is the process that helps in determining the changes associated with landuse and land cover properties with reference to geo-registered multi-temporal remote sensing information. It assists in identifying change between two or more dates that is uncharacterized of normal variation. After image to image registrations, the normalized difference vegetation index (NDVI), the transformed normalized difference vegetation index (TNDVI), the enhanced vegetation index (EVI) and the soil-adjusted vegetation index (SAVI) values were derived from Landsat ETM+ dataset and an image differencing algorithm was applied to detect changes. This paper presents an application of the use of multi-temporal Landsat ETM+ images and multi-spectral MODIS (Terra) EVI/NDVI time-series vegetation phenology metrics for the District Sargodha. The results can be utilized as a temporal landuse change model for Punjab province of Pakistan to quantify the extent and nature of change and assist in future prediction studies. This will support environmental planning to develop sustainable landuse practices.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/sociedadenatureza/article/view/17893
url https://seer.ufu.br/index.php/sociedadenatureza/article/view/17893
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/sociedadenatureza/article/view/17893/pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv Sociedade & Natureza; Vol. 24 No. 3 (2012)
Sociedade & Natureza; v. 24 n. 3 (2012)
1982-4513
0103-1570
reponame:Sociedade & natureza (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Sociedade & natureza (Online)
collection Sociedade & natureza (Online)
repository.name.fl_str_mv Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv ||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br
_version_ 1799943979400167424