Geospatial analysis of tourism supply and flows in northeastern Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Sociedade & natureza (Online) |
Texto Completo: | https://seer.ufu.br/index.php/sociedadenatureza/article/view/62904 |
Resumo: | Tourism has been established as a significant activity worldwide, especially in the economic aspect. As a multifaceted phenomenon, including its spatial component, the systemic perspective allows a fragmented or integrated study of its different parts. The geographic space encompasses fixed elements and tourist flows, which are dynamic according to the constitution of the space. In Northeastern Brazil, tourism is one of the activities that considerably move the economy and promote the consumption of places with the support of infrastructure and services. However, it is still a sector concentrated in the largest cities of the region, contributing to reinforcing intra-regional inequalities. Therefore, it is opportune to use geospatial analysis techniques to study tourism in order to identify and discuss the spatial distribution of tourism supply and possible tourist flows on two geographic scales: in Northeastern Brazil (NEB) and in the Immediate Geographic Region of Princesa Isabel (RGIPI). For this purpose, QGIS with R language was used to treat geographic, population, per capita income, and tourist businesses data and to calculate the spatial indices of autocorrelation and Moran’s I contiguity on global and local scales, respectively. The outcomes revealed the spatial independence of tourist supply in the NEB, which is also seen on a local scale in the RGIPI. The analysis also revealed that the highest probabilities of tourist flow occur between the most populous, higher income, and more developed capitals. Therefore, geoprocessing plays a key role in the study of tourism as it materializes in geographical space and allows highlighting areas for tourism expansion in the interior of the NEB. |
id |
UFU-6_bbb132c0a01f0984e032885586c87c6f |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/62904 |
network_acronym_str |
UFU-6 |
network_name_str |
Sociedade & natureza (Online) |
repository_id_str |
|
spelling |
Geospatial analysis of tourism supply and flows in northeastern BrazilAnálise geoespacial da oferta e dos fluxos turísticos no Nordeste brasileiroAutocorrelação espacialContiguidade espacialZonas turísticasSpatial autocorrelationSpatial contiguityTourist areasTourism has been established as a significant activity worldwide, especially in the economic aspect. As a multifaceted phenomenon, including its spatial component, the systemic perspective allows a fragmented or integrated study of its different parts. The geographic space encompasses fixed elements and tourist flows, which are dynamic according to the constitution of the space. In Northeastern Brazil, tourism is one of the activities that considerably move the economy and promote the consumption of places with the support of infrastructure and services. However, it is still a sector concentrated in the largest cities of the region, contributing to reinforcing intra-regional inequalities. Therefore, it is opportune to use geospatial analysis techniques to study tourism in order to identify and discuss the spatial distribution of tourism supply and possible tourist flows on two geographic scales: in Northeastern Brazil (NEB) and in the Immediate Geographic Region of Princesa Isabel (RGIPI). For this purpose, QGIS with R language was used to treat geographic, population, per capita income, and tourist businesses data and to calculate the spatial indices of autocorrelation and Moran’s I contiguity on global and local scales, respectively. The outcomes revealed the spatial independence of tourist supply in the NEB, which is also seen on a local scale in the RGIPI. The analysis also revealed that the highest probabilities of tourist flow occur between the most populous, higher income, and more developed capitals. Therefore, geoprocessing plays a key role in the study of tourism as it materializes in geographical space and allows highlighting areas for tourism expansion in the interior of the NEB.O turismo se consolidou no mundo como uma atividade de grande relevância, sobretudo no aspecto econômico. Pela sua característica multifacetada, incluída a sua vertente espacial, pode ser estudado de forma compartimentada ou integrando seus diversos componentes. No espaço geográfico se localizam os elementos fixos e os fluxos turísticos, que se dinamizam conforme a constituição desse espaço. Na região Nordeste do Brasil o turismo é uma das atividades que movimenta consideravelmente a economia e promove o consumo dos lugares, com apoio de infraestrutura e serviços. Entretanto, ainda é um setor concentrado nas maiores cidades da região, o que contribui para reforçar as desigualdades intrarregionais. Sendo assim, se coloca oportuna a utilização de técnicas de análise geoespacial para o estudo do turismo, objetivando identificar e discutir a distribuição espacial da oferta e dos fluxos turísticos possíveis em dois recortes geográficos: no Nordeste Brasileiro (NEB) e na Região Geográfica Imediata de Princesa Isabel (RGIPI). Para tanto, foram utilizados o sistema de informação geográfica QGIS em conjunto com a linguagem R para tratar os dados geográficos de população, renda per capita e empreendimentos turísticos e computar os índices espaciais de autocorrelação e contiguidade I de Moran, global e local, respectivamente. Os resultados mostraram que há independência espacial na oferta turística no NEB, que se reflete também na escala local, porém sendo possível identificar zonas turísticas. Além disso, foi identificado que as maiores probabilidades de fluxos turísticos estão entre as capitais mais populosas, de maior renda e mais desenvolvidas. Considerando os dados utilizados e os resultados obtidos, verificou-se que o geoprocessamento cumpre um papel importante no estudo do turismo, uma vez que o mesmo permitiu identificar áreas para expansão dessa atividade no interior do NEB.Universidade Federal de Uberlândia2021-10-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/6290410.14393/SN-v33-2021-62904Sociedade & Natureza; Vol. 33 (2021)Sociedade & Natureza; v. 33 (2021)1982-45130103-1570reponame:Sociedade & natureza (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporenghttps://seer.ufu.br/index.php/sociedadenatureza/article/view/62904/32698https://seer.ufu.br/index.php/sociedadenatureza/article/view/62904/32699Copyright (c) 2021 Erickson Melo de Albuquerque, Eduardo Rodrigues Viana de Limainfo:eu-repo/semantics/openAccessAlbuquerque, Erickson MeloLima, Eduardo Rodrigues Viana2021-10-18T19:33:18Zoai:ojs.www.seer.ufu.br:article/62904Revistahttp://www.sociedadenatureza.ig.ufu.br/PUBhttps://seer.ufu.br/index.php/sociedadenatureza/oai||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br1982-45130103-1570opendoar:2021-10-18T19:33:18Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Geospatial analysis of tourism supply and flows in northeastern Brazil Análise geoespacial da oferta e dos fluxos turísticos no Nordeste brasileiro |
title |
Geospatial analysis of tourism supply and flows in northeastern Brazil |
spellingShingle |
Geospatial analysis of tourism supply and flows in northeastern Brazil Albuquerque, Erickson Melo Autocorrelação espacial Contiguidade espacial Zonas turísticas Spatial autocorrelation Spatial contiguity Tourist areas |
title_short |
Geospatial analysis of tourism supply and flows in northeastern Brazil |
title_full |
Geospatial analysis of tourism supply and flows in northeastern Brazil |
title_fullStr |
Geospatial analysis of tourism supply and flows in northeastern Brazil |
title_full_unstemmed |
Geospatial analysis of tourism supply and flows in northeastern Brazil |
title_sort |
Geospatial analysis of tourism supply and flows in northeastern Brazil |
author |
Albuquerque, Erickson Melo |
author_facet |
Albuquerque, Erickson Melo Lima, Eduardo Rodrigues Viana |
author_role |
author |
author2 |
Lima, Eduardo Rodrigues Viana |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Albuquerque, Erickson Melo Lima, Eduardo Rodrigues Viana |
dc.subject.por.fl_str_mv |
Autocorrelação espacial Contiguidade espacial Zonas turísticas Spatial autocorrelation Spatial contiguity Tourist areas |
topic |
Autocorrelação espacial Contiguidade espacial Zonas turísticas Spatial autocorrelation Spatial contiguity Tourist areas |
description |
Tourism has been established as a significant activity worldwide, especially in the economic aspect. As a multifaceted phenomenon, including its spatial component, the systemic perspective allows a fragmented or integrated study of its different parts. The geographic space encompasses fixed elements and tourist flows, which are dynamic according to the constitution of the space. In Northeastern Brazil, tourism is one of the activities that considerably move the economy and promote the consumption of places with the support of infrastructure and services. However, it is still a sector concentrated in the largest cities of the region, contributing to reinforcing intra-regional inequalities. Therefore, it is opportune to use geospatial analysis techniques to study tourism in order to identify and discuss the spatial distribution of tourism supply and possible tourist flows on two geographic scales: in Northeastern Brazil (NEB) and in the Immediate Geographic Region of Princesa Isabel (RGIPI). For this purpose, QGIS with R language was used to treat geographic, population, per capita income, and tourist businesses data and to calculate the spatial indices of autocorrelation and Moran’s I contiguity on global and local scales, respectively. The outcomes revealed the spatial independence of tourist supply in the NEB, which is also seen on a local scale in the RGIPI. The analysis also revealed that the highest probabilities of tourist flow occur between the most populous, higher income, and more developed capitals. Therefore, geoprocessing plays a key role in the study of tourism as it materializes in geographical space and allows highlighting areas for tourism expansion in the interior of the NEB. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-18 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/62904 10.14393/SN-v33-2021-62904 |
url |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/62904 |
identifier_str_mv |
10.14393/SN-v33-2021-62904 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/62904/32698 https://seer.ufu.br/index.php/sociedadenatureza/article/view/62904/32699 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Erickson Melo de Albuquerque, Eduardo Rodrigues Viana de Lima info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Erickson Melo de Albuquerque, Eduardo Rodrigues Viana de Lima |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Sociedade & Natureza; Vol. 33 (2021) Sociedade & Natureza; v. 33 (2021) 1982-4513 0103-1570 reponame:Sociedade & natureza (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Sociedade & natureza (Online) |
collection |
Sociedade & natureza (Online) |
repository.name.fl_str_mv |
Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br |
_version_ |
1799943982691647488 |