INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Hygeia (Uberlândia) |
Texto Completo: | https://seer.ufu.br/index.php/hygeia/article/view/65686 |
Resumo: | In view of the discordant approaches on the relationship between COVID-19 pandemic and physical, social and economic attributes of urban areas, the proposed research contributes to the advance in the clarification of an issue that proves to be cardinal for the planning of human settlements in the future, as it was investigated the relationship between transmission, hospitalization and deaths indicators with sociodemographic, socioeconomic and urban indicators in all municipalities in the state of Mato Grosso (Brazil), from the moment the first case was confirmed in the state – 16 March 2020 – until 31 December 2021. To this aim, regression analyses were performed and local spatial patterns were examined, before which the Principal Component Analysis (PCA) technique was used in order to identify the most significant explanatory variables. Significant positive correlations were found between variables associated with Diffusion and variables associated with socioeconomic factors, as well as between Diffusion and Importance of the municipality and indicators related to Morbidity (Mortality and Lethality). These, on the other hand, were negatively correlated with socioeconomic and density variables (with regard to intra-domiciliary agglomeration). |
id |
UFU-7_b57c52edfa24e0da35a6fa90391f7c82 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/65686 |
network_acronym_str |
UFU-7 |
network_name_str |
Hygeia (Uberlândia) |
repository_id_str |
|
spelling |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZILINFLUÊNCIAS DE CONDICIONANTES SOCIODEMOGRÁFICOS, SOCIOECONÔMICOS E URBANÍSTICOS SOBRE OS IMPACTOS DA COVID-19 EM MATO GROSSO, BRASILGeografia da SaúdeAnálise EspacialEpidemiologiaCOVID-19Mato GrossoHealth GeographySpatial AnalysisEpidemiologyCOVID-19Mato GrossoIn view of the discordant approaches on the relationship between COVID-19 pandemic and physical, social and economic attributes of urban areas, the proposed research contributes to the advance in the clarification of an issue that proves to be cardinal for the planning of human settlements in the future, as it was investigated the relationship between transmission, hospitalization and deaths indicators with sociodemographic, socioeconomic and urban indicators in all municipalities in the state of Mato Grosso (Brazil), from the moment the first case was confirmed in the state – 16 March 2020 – until 31 December 2021. To this aim, regression analyses were performed and local spatial patterns were examined, before which the Principal Component Analysis (PCA) technique was used in order to identify the most significant explanatory variables. Significant positive correlations were found between variables associated with Diffusion and variables associated with socioeconomic factors, as well as between Diffusion and Importance of the municipality and indicators related to Morbidity (Mortality and Lethality). These, on the other hand, were negatively correlated with socioeconomic and density variables (with regard to intra-domiciliary agglomeration).Em vista das abordagens discordantes sobre as relações entre a pandemia de COVID-19 e características físicas, sociais e econômicas de áreas urbanas, a pesquisa proposta contribui para o avanço no esclarecimento de uma questão que se mostra cardeal para o planejamento de assentamentos humanos no futuro, ao investigar as relações entre indicadores sobre transmissão, hospitalização e óbitos associados à doença com indicadores sociodemográficos, socioeconômicos e urbanísticos em todos os municípios do estado de Mato Grosso (Brasil), desde o momento em que se confirmou o primeiro caso da afecção no estado – 16 de março de 2020 – até 31 de dezembro de 2021. Para tanto, foram efetuadas análises de regressão e examinados padrões espaciais locais, antes dos quais foi empregada técnica de Análise de Componentes Principais (ACP) a fim de se identificarem as variáveis explanatórias mais significativas. Encontraram-se correlações positivas significativas entre variáveis associadas à Difusão e variáveis associadas a fatores socioeconômicos, assim como entre Difusão e Importância do município e indicadores relativos à Morbidade (Mortalidade e Letalidade). Estes, por outro lado, foram negativamente correlacionados às variáveis socioeconômicas e de densidade (no que se refere à aglomeração intradomiciliar).Universidade Federal de Uberlândia2023-05-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/hygeia/article/view/6568610.14393/Hygeia1965686Hygeia - Revista Brasileira de Geografia Médica e da Saúde; v. 19 (2023); e19131980-1726reponame:Hygeia (Uberlândia)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/hygeia/article/view/65686/36064Copyright (c) 2023 Ramon Lucato de Aguilarinfo:eu-repo/semantics/openAccessAguilar, Ramon Lucato de2023-05-09T20:02:50Zoai:ojs.www.seer.ufu.br:article/65686Revistahttps://seer.ufu.br/index.php/hygeiaPUBhttps://seer.ufu.br/index.php/hygeia/oaisamuel@ufu.br||flavia.santos@ufu.br1980-17261980-1726opendoar:2023-05-09T20:02:50Hygeia (Uberlândia) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL INFLUÊNCIAS DE CONDICIONANTES SOCIODEMOGRÁFICOS, SOCIOECONÔMICOS E URBANÍSTICOS SOBRE OS IMPACTOS DA COVID-19 EM MATO GROSSO, BRASIL |
title |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL |
spellingShingle |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL Aguilar, Ramon Lucato de Geografia da Saúde Análise Espacial Epidemiologia COVID-19 Mato Grosso Health Geography Spatial Analysis Epidemiology COVID-19 Mato Grosso |
title_short |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL |
title_full |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL |
title_fullStr |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL |
title_full_unstemmed |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL |
title_sort |
INFLUENCES OF SOCIODEMOGRAPHIC, SOCIOECONOMIC AND URBANISTIC CONDITIONINGS ON THE IMPACTS OF COVID-19 IN MATO GROSSO, BRAZIL |
author |
Aguilar, Ramon Lucato de |
author_facet |
Aguilar, Ramon Lucato de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Aguilar, Ramon Lucato de |
dc.subject.por.fl_str_mv |
Geografia da Saúde Análise Espacial Epidemiologia COVID-19 Mato Grosso Health Geography Spatial Analysis Epidemiology COVID-19 Mato Grosso |
topic |
Geografia da Saúde Análise Espacial Epidemiologia COVID-19 Mato Grosso Health Geography Spatial Analysis Epidemiology COVID-19 Mato Grosso |
description |
In view of the discordant approaches on the relationship between COVID-19 pandemic and physical, social and economic attributes of urban areas, the proposed research contributes to the advance in the clarification of an issue that proves to be cardinal for the planning of human settlements in the future, as it was investigated the relationship between transmission, hospitalization and deaths indicators with sociodemographic, socioeconomic and urban indicators in all municipalities in the state of Mato Grosso (Brazil), from the moment the first case was confirmed in the state – 16 March 2020 – until 31 December 2021. To this aim, regression analyses were performed and local spatial patterns were examined, before which the Principal Component Analysis (PCA) technique was used in order to identify the most significant explanatory variables. Significant positive correlations were found between variables associated with Diffusion and variables associated with socioeconomic factors, as well as between Diffusion and Importance of the municipality and indicators related to Morbidity (Mortality and Lethality). These, on the other hand, were negatively correlated with socioeconomic and density variables (with regard to intra-domiciliary agglomeration). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/hygeia/article/view/65686 10.14393/Hygeia1965686 |
url |
https://seer.ufu.br/index.php/hygeia/article/view/65686 |
identifier_str_mv |
10.14393/Hygeia1965686 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/hygeia/article/view/65686/36064 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Ramon Lucato de Aguilar info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Ramon Lucato de Aguilar |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Hygeia - Revista Brasileira de Geografia Médica e da Saúde; v. 19 (2023); e1913 1980-1726 reponame:Hygeia (Uberlândia) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Hygeia (Uberlândia) |
collection |
Hygeia (Uberlândia) |
repository.name.fl_str_mv |
Hygeia (Uberlândia) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
samuel@ufu.br||flavia.santos@ufu.br |
_version_ |
1799944284939485184 |