Projetos de sistemas criptográficos utilizando códigos lineares

Detalhes bibliográficos
Autor(a) principal: Freitas Júnior, José Luiz de
Data de Publicação: 1998
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/29774
http://doi.org/10.14393/ufu.di.1998.19
Resumo: This work aims to study and develop classical and public key cryptographic systems, using algebraic theory of linear codes, in order to better understand the subject and verify the viability of such systems in relation to DES [Luc, 1986] and RSA [Sal, 1990], The interest in this topic comes from the fact that I am a professor and economist and work with disciplines and tasks that require knowledge related to data security; there are several applications of cryptographic systems, both in computer science and in engineering, and, mainly, in several other areas such as military, diplomatic, electronic commerce, with regard to data security. Cryptographic protection techniques are necessary for the transmission and storage of information that travels in data communications environments. To develop such cryptographic systems essential theoretical bases will be exposed for their production and understanding, having as reference the works cited in the bibliography, as well as the orientations of the guiding teachers. The word Cryptography comes from the Greek (kryptós = hidden + grapho = spelling) - it is, therefore, the art or science of writing in cipher or in code, in order to make a2 written message understandable only to its recipient, to decipher it, almost always requires the knowledge of a key, secret information. It is one of the most widely used security mechanisms today and arose from the need to send “sensitive” information through unreliable media [Sal, 1990] and [Luc, 1986]. But, through art or science called cryptanalysis, from the Greek kryptós + análysis = decomposition; third parties can break the system and determine the original text, even without knowing the key - in possession of the encrypted message. From the union between cryptography and cryptanalysis came cryptology (from the Greek kryptós = occult + logos = study) which has been used since the hieroglyphic writing of the Egyptians - for almost four thousand years, it has been widely used, mainly for military purposes and diplomatic, as an example, its use in the Second War, and the consequent breaking of the German and Japanese codes, which was fundamental for the success of the Allies [Luc, 1986]. Regarding the type, the encryption can be: * Secret key - which uses the same key to encrypt (secret method of writing, through which the original text is transformed into a code) and decrypt (reverse process of encrypting) a message. In this case, sender and recipient combine the secret key to be used in the transmission, as a result of which there is a great possibility of violation. * Public key - designed by Diffie and Hellman [Sal, 1990], it makes it difficult to break through two keys: the public key - known to everyone; and the private one - known only to its owner. Then, the sender uses the recipient's public key to encrypt the message and sends it, the recipient, in turn, uses his private key to decrypt the message. Public key cryptography has many advantages over key3 including verification of signatures using authentication methods. However, speed is a major disadvantage, since encryption and decryption operations require calculations with very large numbers. The concept of private key cryptosystems, based on error correction codes, has attracted the interest of researchers working in the area of ​​Information Theory and, since the emergence of the first cryptosystem of this type, in 1978 [Van, 1988], until the today, important contributions have been made to cryptography through the design of new encryption schemes that employ code theory1. s Code theory started in 1940 with the work of Golay, Hamming and Shannon [Hol, 1992], although the problem dealt with was engineering, it developed through more sophisticated mathematical techniques, giving rise to code families - for example, codes Hamming, Cyclic and BCH codes, as well as more advanced codes, such as Golay, Goppa, Altemant, Kerdock and Preparata codes [Hol, 1992]. Codes were invented to correct errors on the communication channel with noise [Hol, 1992]. The transmission / storage of data on a communication channel occurs only in one direction, from source to destination. Therefore, error controls for this type of system must be performed using an error correction code that automatically corrects errors detected at the destination. As for the type, the codes can be: block codes and convolutional codes. Linear block codes (linear codes) are a subclass of the block codes - the object of the present study. * Block codes - the coding of a block code divides the information sequence into k bit message blocks. A message block is represented by the binary utuple u = [u \, u2, ..., wk) called message. Coding transforms each message u into a zz-tuple v = (vb v2, ..., vn) of discrete symbols, called a code word. Therefore, corresponding to 2 different possible messages, there are 2 different possible code words. This set of 2k code words of size n is called a block code (n, k). The R = k / n ratio is called the code ratio and can be interpreted as the number of bits of information entering the coding channel by transmitted symbol. In a binary block code (binary code), each code word v is also binary. Consequently, for a binary code to be useful (that is, to have a different code word associated with each message), k <n or R <1. When k <n, nk bits of redundancy can be added to each message to form a word code. These redundancy bits allow, eventually, the correction of errors caused by the channel. * Linear codes - A block code of size n and 2k code words is called a linear code (n, k \ se and only if, these 2k code words form a ^ -space subspace of the vector space of all / z-tuples on the body GF (2) [Lin, 1983j. A binary block code is linear, if and only if, the sum of two code words in module-2 is also a code word. A linear code C is called cyclic, if for every code word v = (v0, U. ■■■, bi-2, v „. |) EC, there is also a code word v <n = (v„ .i, v0, vi ..., v „.2) eC [Wic, 1995], 5 It must be considered as the basis of the theory of information linked to communications and transmissions with confidentiality: in communications, noise must be eliminated, restoring the original information; in cryptography, noise introduced through encryption must be eliminated in order to restore the original information.
id UFU_19020891d228b53a53224ae48d7905dd
oai_identifier_str oai:repositorio.ufu.br:123456789/29774
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Projetos de sistemas criptográficos utilizando códigos linearesProjects of cryptographic systems using linear codesSistemas criptográficosTeoria algébrica dos códigos linearesCNPQ::ENGENHARIASCriptografiaThis work aims to study and develop classical and public key cryptographic systems, using algebraic theory of linear codes, in order to better understand the subject and verify the viability of such systems in relation to DES [Luc, 1986] and RSA [Sal, 1990], The interest in this topic comes from the fact that I am a professor and economist and work with disciplines and tasks that require knowledge related to data security; there are several applications of cryptographic systems, both in computer science and in engineering, and, mainly, in several other areas such as military, diplomatic, electronic commerce, with regard to data security. Cryptographic protection techniques are necessary for the transmission and storage of information that travels in data communications environments. To develop such cryptographic systems essential theoretical bases will be exposed for their production and understanding, having as reference the works cited in the bibliography, as well as the orientations of the guiding teachers. The word Cryptography comes from the Greek (kryptós = hidden + grapho = spelling) - it is, therefore, the art or science of writing in cipher or in code, in order to make a2 written message understandable only to its recipient, to decipher it, almost always requires the knowledge of a key, secret information. It is one of the most widely used security mechanisms today and arose from the need to send “sensitive” information through unreliable media [Sal, 1990] and [Luc, 1986]. But, through art or science called cryptanalysis, from the Greek kryptós + análysis = decomposition; third parties can break the system and determine the original text, even without knowing the key - in possession of the encrypted message. From the union between cryptography and cryptanalysis came cryptology (from the Greek kryptós = occult + logos = study) which has been used since the hieroglyphic writing of the Egyptians - for almost four thousand years, it has been widely used, mainly for military purposes and diplomatic, as an example, its use in the Second War, and the consequent breaking of the German and Japanese codes, which was fundamental for the success of the Allies [Luc, 1986]. Regarding the type, the encryption can be: * Secret key - which uses the same key to encrypt (secret method of writing, through which the original text is transformed into a code) and decrypt (reverse process of encrypting) a message. In this case, sender and recipient combine the secret key to be used in the transmission, as a result of which there is a great possibility of violation. * Public key - designed by Diffie and Hellman [Sal, 1990], it makes it difficult to break through two keys: the public key - known to everyone; and the private one - known only to its owner. Then, the sender uses the recipient's public key to encrypt the message and sends it, the recipient, in turn, uses his private key to decrypt the message. Public key cryptography has many advantages over key3 including verification of signatures using authentication methods. However, speed is a major disadvantage, since encryption and decryption operations require calculations with very large numbers. The concept of private key cryptosystems, based on error correction codes, has attracted the interest of researchers working in the area of ​​Information Theory and, since the emergence of the first cryptosystem of this type, in 1978 [Van, 1988], until the today, important contributions have been made to cryptography through the design of new encryption schemes that employ code theory1. s Code theory started in 1940 with the work of Golay, Hamming and Shannon [Hol, 1992], although the problem dealt with was engineering, it developed through more sophisticated mathematical techniques, giving rise to code families - for example, codes Hamming, Cyclic and BCH codes, as well as more advanced codes, such as Golay, Goppa, Altemant, Kerdock and Preparata codes [Hol, 1992]. Codes were invented to correct errors on the communication channel with noise [Hol, 1992]. The transmission / storage of data on a communication channel occurs only in one direction, from source to destination. Therefore, error controls for this type of system must be performed using an error correction code that automatically corrects errors detected at the destination. As for the type, the codes can be: block codes and convolutional codes. Linear block codes (linear codes) are a subclass of the block codes - the object of the present study. * Block codes - the coding of a block code divides the information sequence into k bit message blocks. A message block is represented by the binary utuple u = [u \, u2, ..., wk) called message. Coding transforms each message u into a zz-tuple v = (vb v2, ..., vn) of discrete symbols, called a code word. Therefore, corresponding to 2 different possible messages, there are 2 different possible code words. This set of 2k code words of size n is called a block code (n, k). The R = k / n ratio is called the code ratio and can be interpreted as the number of bits of information entering the coding channel by transmitted symbol. In a binary block code (binary code), each code word v is also binary. Consequently, for a binary code to be useful (that is, to have a different code word associated with each message), k <n or R <1. When k <n, nk bits of redundancy can be added to each message to form a word code. These redundancy bits allow, eventually, the correction of errors caused by the channel. * Linear codes - A block code of size n and 2k code words is called a linear code (n, k \ se and only if, these 2k code words form a ^ -space subspace of the vector space of all / z-tuples on the body GF (2) [Lin, 1983j. A binary block code is linear, if and only if, the sum of two code words in module-2 is also a code word. A linear code C is called cyclic, if for every code word v = (v0, U. ■■■, bi-2, v „. |) EC, there is also a code word v <n = (v„ .i, v0, vi ..., v „.2) eC [Wic, 1995], 5 It must be considered as the basis of the theory of information linked to communications and transmissions with confidentiality: in communications, noise must be eliminated, restoring the original information; in cryptography, noise introduced through encryption must be eliminated in order to restore the original information.Dissertação (Mestrado)Este trabalho tem por objetivo o estudo e desenvolvimento de sistemas criptográficos clássicos e de chave pública, utilizando teoria algébrica dos códigos lineares, com o intuito de conhecer melhor o assunto e verificar a viabilidade de tais sistemas em relação ao DES [Luc,1986] e RSA [Sal, 1990], O interesse por este tema, advém do fato de eu ser professor e economiário e atuar com disciplinas e tarefas que requerem conhecimentos relativos à segurança de dados; são várias as aplicações de sistemas criptográficos, tanto em ciência da computação quanto em engenharia, e, principalmente, em várias outras áreas como aplicações militares, diplomáticas, comércio eletrônico, no tocante à segurança de dados. Técnicas de proteção criptográficas são necessárias para transmissão e armazenamento de informações que transitam em ambientes de comunicações de dados. Para desenvolver tais sistemas criptográficos serão expostos bases teóricas imprescindíveis para produção e compreensão dos mesmos, tendo como referência as obras citadas na bibliografia, bem como as orientações dos professores orientadores. A palavra Criptografia vem do grego (kryptós = escondido + grapho = grafia) - é, portanto, a arte ou ciência de escrever em cifra ou em código, a fim de tornar a2 mensagem escrita compreensível apenas a seu destinatário, para decifrá-la, quase sempre requer o conhecimento de uma chave, uma informação secreta. É um dos mecanismos de segurança mais utilizados atualmente e surgiu da necessidade de enviar informações “sensíveis” através de meios de comunicação não confiáveis [Sal, 1990] e [Luc,1986]. Mas, através da arte ou ciência chamada criptoanálise, do grego kryptós + análysis = decomposição; terceiros podem quebrar o sistema e determinar o texto original, mesmo desconhecendo a chave - de posse da mensagem cifrada. Da união entre criptografia e criptoanálise surgiu a criptologia (do grego kryptós = oculto + lógos = estudo) que é uma ciência usada desde a escrita hieroglífica dos Egípcios - há quase quatro mil anos, a mesma vem sendo muito utilizada, principalmente para fins militares e diplomáticos, como exemplo, pode-se citar sua utilização na Segunda Guerra, e a consequente quebra dos códigos alemão e japonês, que foi fundamental para o sucesso dos Aliados [Luc,1986]. Quanto ao tipo, a criptografia pode ser de: * Chave secreta - a qual utiliza a mesma chave para cifrar (método secreto de escrita, através do qual transforma-se o texto original em código) e decifrar (processo inverso de cifrar) uma mensagem. Neste caso, emissor e destinatário combinam a chave secreta a ser usada na transmissão, em conseqüência é grande a possibilidade de violação. * Chave pública - projetada por Diffie e Hellman [Sal,1990], ela dificulta a violação, através de duas chaves: a pública - de conhecimento de todos; e a privada - conhecida apenas pelo seu dono. Então, o emissor utiliza a chave pública do destinatário para cifrar a mensagem e a envia, o destinatário, por sua vez, utiliza sua chave privada para decifrar a mensagem. A criptografia de chave pública possui muitas vantagens em relação a de chave3 privada, dentre elas, a verificação de assinaturas através de métodos de autenticação. Entretanto, a velocidade é uma desvantagem grande, devido às operações de cifragem e decifiagem requererem cálculos com números muito grandes. A concepção de criptosistemas de chave privada, baseados em códigos corretores de erros, tem atraído o interesse de pesquisadores que atuam na área de Teoria da Informação e, desde o surgimento do primeiro criptosistema deste tipo, em 1978 [Van,1988], até os dias de hoje, contribuições importantes têm sido dadas a criptografia através da concepção de novos esquemas de cifragem que empregam teoria dos códigos1. s Teoria dos códigos começou em 1940 com o trabalho de Golay, Hamming e Shannon [Hol,1992], apesar do problema tratado ser de engenharia, desenvolveu-se através de técnicas matemáticas mais sofisticadas, dando origem a famílias de códigos - por exemplo, códigos de Hamming, Cíclicos e BCH, como também códigos mais avançados, tais como códigos Golay, Goppa, Altemant, Kerdock e Preparata [Hol,1992]. Códigos foram inventados para corrigir erros sobre o canal de comunicação com ruído [Hol,1992], A transmissão/armazenamento de dados em um canal de comunicação ocorre apenas em uma direção, da origem para o destino. Logo, controles de erros para este tipo de sistema, devem ser realizados utilizando código de correção de erros que corrige automaticamente os erros detectados no destino. Quanto ao tipo, os códigos podem ser: códigos de blocos e códigos convolucionais. Códigos de blocos lineares (códigos lineares) são uma subclasse dos códigos de blocos - objeto do presente estudo. * Códigos de blocos - a codificação de um código de bloco divide a seqüência de informação em blocos de mensagem de k bits. Um bloco de mensagem é representado pela Utupla binária u = [u\, u2, ..., wk) chamada mensagem. A codificação transforma cada mensagem u em uma zz-tupla v = (vb v2,..., vn) de símbolos discretos, chamado de palavra código. Logo, correspondendo a 2k possíveis mensagens diferentes, existem 2Â possíveis palavras códigos diferentes. Este conjunto de 2k palavras códigos de tamanho n é chamado um código de blocos (n,k). A razão R= k/n é chamada razão do código e pode ser interpretada como o número de bits de informação entrando no canal de codificação por símbolo transmitido. Em um código de bloco binário (código binário), cada palavra código v é também binária. Consequentemente, para um código binário ser útil (isto é, ter uma palavra código diferente associada a cada mensagem), k < n ou R < 1. Quando k< n, n-k bits de redundância podem ser adicionados a cada mensagem para formar uma palavra código. Estes bits de redundância permitem, eventual mente, a correção de erros provocados pelo canal. * Códigos lineares - Um código de bloco de tamanho n e 2k palavras código é denominado um código linear (n,k\ se e somente se, estas 2k palavras códigos formar um subespaço de ^-dimensão do espaço vetorial de todas as /z-tuplas sobre o corpo GF(2) [Lin,1983j. Um código de bloco binário é linear, se e somente se, a soma de duas palavras código em módulo-2 for também uma palavra código. Um código linear C é denominado cíclico, se para toda palavra código v=(v0, U. ■■■, bi-2, v„.|)eC, existir também uma palavra código v<n=(v„.i, v0, vi ..., v„.2)eC [Wic,1995],5 Deve-se considerar como base da teoria da informação ligada às comunicações e às transmissões com sigilo: nas comunicações deve-se eliminar o ruído restaurando a informação original; na criptografia deve-se eliminar o ruído introduzido através de ciframento de forma a restaurar a informação original.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaSouza, João Nunes dehttp://lattes.cnpq.br/2125942405817598Fernandes, Márcia AparecidaCarrijo, Gilberto ArantesLoureiro, Antônio Alfredo FerreiraFreitas Júnior, José Luiz de2020-08-28T19:56:00Z2020-08-28T19:56:00Z1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFREITAS JÚNIOR, José Luiz de. Projetos de sistemas criptográficos utilizando códigos lineares. 1998. 121 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.1998.19https://repositorio.ufu.br/handle/123456789/29774http://doi.org/10.14393/ufu.di.1998.19porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-08-29T06:18:46Zoai:repositorio.ufu.br:123456789/29774Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-08-29T06:18:46Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Projetos de sistemas criptográficos utilizando códigos lineares
Projects of cryptographic systems using linear codes
title Projetos de sistemas criptográficos utilizando códigos lineares
spellingShingle Projetos de sistemas criptográficos utilizando códigos lineares
Freitas Júnior, José Luiz de
Sistemas criptográficos
Teoria algébrica dos códigos lineares
CNPQ::ENGENHARIAS
Criptografia
title_short Projetos de sistemas criptográficos utilizando códigos lineares
title_full Projetos de sistemas criptográficos utilizando códigos lineares
title_fullStr Projetos de sistemas criptográficos utilizando códigos lineares
title_full_unstemmed Projetos de sistemas criptográficos utilizando códigos lineares
title_sort Projetos de sistemas criptográficos utilizando códigos lineares
author Freitas Júnior, José Luiz de
author_facet Freitas Júnior, José Luiz de
author_role author
dc.contributor.none.fl_str_mv Souza, João Nunes de
http://lattes.cnpq.br/2125942405817598
Fernandes, Márcia Aparecida
Carrijo, Gilberto Arantes
Loureiro, Antônio Alfredo Ferreira
dc.contributor.author.fl_str_mv Freitas Júnior, José Luiz de
dc.subject.por.fl_str_mv Sistemas criptográficos
Teoria algébrica dos códigos lineares
CNPQ::ENGENHARIAS
Criptografia
topic Sistemas criptográficos
Teoria algébrica dos códigos lineares
CNPQ::ENGENHARIAS
Criptografia
description This work aims to study and develop classical and public key cryptographic systems, using algebraic theory of linear codes, in order to better understand the subject and verify the viability of such systems in relation to DES [Luc, 1986] and RSA [Sal, 1990], The interest in this topic comes from the fact that I am a professor and economist and work with disciplines and tasks that require knowledge related to data security; there are several applications of cryptographic systems, both in computer science and in engineering, and, mainly, in several other areas such as military, diplomatic, electronic commerce, with regard to data security. Cryptographic protection techniques are necessary for the transmission and storage of information that travels in data communications environments. To develop such cryptographic systems essential theoretical bases will be exposed for their production and understanding, having as reference the works cited in the bibliography, as well as the orientations of the guiding teachers. The word Cryptography comes from the Greek (kryptós = hidden + grapho = spelling) - it is, therefore, the art or science of writing in cipher or in code, in order to make a2 written message understandable only to its recipient, to decipher it, almost always requires the knowledge of a key, secret information. It is one of the most widely used security mechanisms today and arose from the need to send “sensitive” information through unreliable media [Sal, 1990] and [Luc, 1986]. But, through art or science called cryptanalysis, from the Greek kryptós + análysis = decomposition; third parties can break the system and determine the original text, even without knowing the key - in possession of the encrypted message. From the union between cryptography and cryptanalysis came cryptology (from the Greek kryptós = occult + logos = study) which has been used since the hieroglyphic writing of the Egyptians - for almost four thousand years, it has been widely used, mainly for military purposes and diplomatic, as an example, its use in the Second War, and the consequent breaking of the German and Japanese codes, which was fundamental for the success of the Allies [Luc, 1986]. Regarding the type, the encryption can be: * Secret key - which uses the same key to encrypt (secret method of writing, through which the original text is transformed into a code) and decrypt (reverse process of encrypting) a message. In this case, sender and recipient combine the secret key to be used in the transmission, as a result of which there is a great possibility of violation. * Public key - designed by Diffie and Hellman [Sal, 1990], it makes it difficult to break through two keys: the public key - known to everyone; and the private one - known only to its owner. Then, the sender uses the recipient's public key to encrypt the message and sends it, the recipient, in turn, uses his private key to decrypt the message. Public key cryptography has many advantages over key3 including verification of signatures using authentication methods. However, speed is a major disadvantage, since encryption and decryption operations require calculations with very large numbers. The concept of private key cryptosystems, based on error correction codes, has attracted the interest of researchers working in the area of ​​Information Theory and, since the emergence of the first cryptosystem of this type, in 1978 [Van, 1988], until the today, important contributions have been made to cryptography through the design of new encryption schemes that employ code theory1. s Code theory started in 1940 with the work of Golay, Hamming and Shannon [Hol, 1992], although the problem dealt with was engineering, it developed through more sophisticated mathematical techniques, giving rise to code families - for example, codes Hamming, Cyclic and BCH codes, as well as more advanced codes, such as Golay, Goppa, Altemant, Kerdock and Preparata codes [Hol, 1992]. Codes were invented to correct errors on the communication channel with noise [Hol, 1992]. The transmission / storage of data on a communication channel occurs only in one direction, from source to destination. Therefore, error controls for this type of system must be performed using an error correction code that automatically corrects errors detected at the destination. As for the type, the codes can be: block codes and convolutional codes. Linear block codes (linear codes) are a subclass of the block codes - the object of the present study. * Block codes - the coding of a block code divides the information sequence into k bit message blocks. A message block is represented by the binary utuple u = [u \, u2, ..., wk) called message. Coding transforms each message u into a zz-tuple v = (vb v2, ..., vn) of discrete symbols, called a code word. Therefore, corresponding to 2 different possible messages, there are 2 different possible code words. This set of 2k code words of size n is called a block code (n, k). The R = k / n ratio is called the code ratio and can be interpreted as the number of bits of information entering the coding channel by transmitted symbol. In a binary block code (binary code), each code word v is also binary. Consequently, for a binary code to be useful (that is, to have a different code word associated with each message), k <n or R <1. When k <n, nk bits of redundancy can be added to each message to form a word code. These redundancy bits allow, eventually, the correction of errors caused by the channel. * Linear codes - A block code of size n and 2k code words is called a linear code (n, k \ se and only if, these 2k code words form a ^ -space subspace of the vector space of all / z-tuples on the body GF (2) [Lin, 1983j. A binary block code is linear, if and only if, the sum of two code words in module-2 is also a code word. A linear code C is called cyclic, if for every code word v = (v0, U. ■■■, bi-2, v „. |) EC, there is also a code word v <n = (v„ .i, v0, vi ..., v „.2) eC [Wic, 1995], 5 It must be considered as the basis of the theory of information linked to communications and transmissions with confidentiality: in communications, noise must be eliminated, restoring the original information; in cryptography, noise introduced through encryption must be eliminated in order to restore the original information.
publishDate 1998
dc.date.none.fl_str_mv 1998
2020-08-28T19:56:00Z
2020-08-28T19:56:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FREITAS JÚNIOR, José Luiz de. Projetos de sistemas criptográficos utilizando códigos lineares. 1998. 121 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.1998.19
https://repositorio.ufu.br/handle/123456789/29774
http://doi.org/10.14393/ufu.di.1998.19
identifier_str_mv FREITAS JÚNIOR, José Luiz de. Projetos de sistemas criptográficos utilizando códigos lineares. 1998. 121 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.1998.19
url https://repositorio.ufu.br/handle/123456789/29774
http://doi.org/10.14393/ufu.di.1998.19
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711606805168128