Códigos parametrizados afins
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/16809 https://doi.org/10.14393/ufu.di.2014.153 |
Resumo: | In this work, we present a special class of linear codes: parameterized affine codes. We show that these codes are easy to construct and that given a parameterized affine code one can easily obtain an equivalent projective parameterized code equivalent to it. We also studied some topics which served as the theoretical foundations for the work, such as the theory of Groebner Bases, the footprint of an ideal and some topics of algebraic geometry and commutative algebra. This work has as main goal to obtain the basic parameters (length, dimension and minimum distance) of parameterized codes related and also to relate them to the projective parameterized codes, as done in [7]. We finish by applying the theory of Groebner Bases to the footprint of a certain ideal in order to obtain the basic parameters of the parameterized code over an affine torus. |
id |
UFU_1e70ddb9285352cbe81855344eef2d59 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/16809 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Códigos parametrizados afinsParameterized affine codesCódigos numéricosBases de GroebnerPegadaCódigos parametrizadosComprimentoDistância mínimaDimensãoGroebner BasesFootprintParameterized codesLengthMinimum distanceDimensionCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAIn this work, we present a special class of linear codes: parameterized affine codes. We show that these codes are easy to construct and that given a parameterized affine code one can easily obtain an equivalent projective parameterized code equivalent to it. We also studied some topics which served as the theoretical foundations for the work, such as the theory of Groebner Bases, the footprint of an ideal and some topics of algebraic geometry and commutative algebra. This work has as main goal to obtain the basic parameters (length, dimension and minimum distance) of parameterized codes related and also to relate them to the projective parameterized codes, as done in [7]. We finish by applying the theory of Groebner Bases to the footprint of a certain ideal in order to obtain the basic parameters of the parameterized code over an affine torus.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorMestre em MatemáticaNeste trabalho apresentamos uma classe especial de códigos lineares: os códigos parametrizados afins. Mostramos que esses códigos são de fácil construção e que, dado um código parametrizado afim, pode-se facilmente obter um código parametrizado projetivo equivalente a ele. Também estudamos algumas teorias que nos serviram como base teórica tais como: a teoria de Bases de Groebner e a Pegada de um ideal e alguns tópicos de geometria algébrica e álgebra comutativa. Este trabalho tem por objetivo principal obter os parâmetros básicos (comprimento, dimensão e distância mínima) dos códigos parametrizados afins e relacioná-los com os códigos parametrizados projetivos, assim como na referência [7]. Encerramos aplicando a teoria de Bases de Groebner a Pegada de um ideal para obter os parâmetros básicos do código parametrizado no toro afim.Universidade Federal de UberlândiaBRPrograma de Pós-graduação em MatemáticaCiências Exatas e da TerraUFUNeumann, Victor Gonzalo Lopezhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4139950U1Brumatti, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783175Z4Carvalho, Cícero Fernandes dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789458A2Oliveira, Fabrício Alves2016-06-22T18:47:02Z2014-06-112016-06-22T18:47:02Z2014-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfOLIVEIRA, Fabrício Alves. Parameterized affine codes. 2014. 54 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Uberlândia, Uberlândia, 2014. DOI https://doi.org/10.14393/ufu.di.2014.153https://repositorio.ufu.br/handle/123456789/16809https://doi.org/10.14393/ufu.di.2014.153porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2021-08-02T12:41:03Zoai:repositorio.ufu.br:123456789/16809Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2021-08-02T12:41:03Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Códigos parametrizados afins Parameterized affine codes |
title |
Códigos parametrizados afins |
spellingShingle |
Códigos parametrizados afins Oliveira, Fabrício Alves Códigos numéricos Bases de Groebner Pegada Códigos parametrizados Comprimento Distância mínima Dimensão Groebner Bases Footprint Parameterized codes Length Minimum distance Dimension CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Códigos parametrizados afins |
title_full |
Códigos parametrizados afins |
title_fullStr |
Códigos parametrizados afins |
title_full_unstemmed |
Códigos parametrizados afins |
title_sort |
Códigos parametrizados afins |
author |
Oliveira, Fabrício Alves |
author_facet |
Oliveira, Fabrício Alves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Neumann, Victor Gonzalo Lopez http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4139950U1 Brumatti, Paulo Roberto http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783175Z4 Carvalho, Cícero Fernandes de http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789458A2 |
dc.contributor.author.fl_str_mv |
Oliveira, Fabrício Alves |
dc.subject.por.fl_str_mv |
Códigos numéricos Bases de Groebner Pegada Códigos parametrizados Comprimento Distância mínima Dimensão Groebner Bases Footprint Parameterized codes Length Minimum distance Dimension CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
Códigos numéricos Bases de Groebner Pegada Códigos parametrizados Comprimento Distância mínima Dimensão Groebner Bases Footprint Parameterized codes Length Minimum distance Dimension CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, we present a special class of linear codes: parameterized affine codes. We show that these codes are easy to construct and that given a parameterized affine code one can easily obtain an equivalent projective parameterized code equivalent to it. We also studied some topics which served as the theoretical foundations for the work, such as the theory of Groebner Bases, the footprint of an ideal and some topics of algebraic geometry and commutative algebra. This work has as main goal to obtain the basic parameters (length, dimension and minimum distance) of parameterized codes related and also to relate them to the projective parameterized codes, as done in [7]. We finish by applying the theory of Groebner Bases to the footprint of a certain ideal in order to obtain the basic parameters of the parameterized code over an affine torus. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-11 2014-02-27 2016-06-22T18:47:02Z 2016-06-22T18:47:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
OLIVEIRA, Fabrício Alves. Parameterized affine codes. 2014. 54 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Uberlândia, Uberlândia, 2014. DOI https://doi.org/10.14393/ufu.di.2014.153 https://repositorio.ufu.br/handle/123456789/16809 https://doi.org/10.14393/ufu.di.2014.153 |
identifier_str_mv |
OLIVEIRA, Fabrício Alves. Parameterized affine codes. 2014. 54 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Uberlândia, Uberlândia, 2014. DOI https://doi.org/10.14393/ufu.di.2014.153 |
url |
https://repositorio.ufu.br/handle/123456789/16809 https://doi.org/10.14393/ufu.di.2014.153 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia BR Programa de Pós-graduação em Matemática Ciências Exatas e da Terra UFU |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia BR Programa de Pós-graduação em Matemática Ciências Exatas e da Terra UFU |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711332066721792 |