Simulation of a new pipe design for erosion reduction in curves

Detalhes bibliográficos
Autor(a) principal: Duarte, Carlos Antonio Ribeiro
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/18329
http://dx.doi.org/10.14393/ufu.te.2017.85
Resumo: Pneumatically conveyed particles are commonly responsible for triggering the erosion process by impacts on the wall. Those impacts result from the fluid-particle interaction and understanding its mechanisms is the key to mitigate the erosion damage in engineering applications. In general, erosion due to particle impingement, which can occur in a variety of practical cases, is often the key factor in pipeline failure. Parts such as elbows, for instance, are particularly prone to erosion issues. In the first part of this thesis, the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are combined with a stochastic Lagrangian particle tracking scheme considering all relevant elementary processes (drag and lift forces, particle rotation, inter-particle collisions, particle-wall interactions, coupling between phases) to numerically predict the erosion phenomenon on a 90 elbow pipe. After a detailed validation of the erosion model based on the experimental data of Solnordal et al. (2015), several cases regarding the wall roughness and static and dynamic coefficients of friction are analysed to elucidate the nature of the erosive process. For such analysis, more fundamental variables related to particle-wall interactions (impact velocity, impact angle, impact frequency) were used to scrutinize the basic erosion mechanisms. Finally, to prove the importance of inter-particle collision on elbow erosion, different mass loadings are additionally simulated. Especially for the high mass loading cases, interesting results about the role of the inter-particle collisions on elbow erosion are enlightened. In a second step, we propose a novel pipe wall design in order to reduce the erosion on a 90 elbow. This design consists of twisting the pipe wall along the flow streamwise direction. Basically, such configuration generates a swirling motion of the flow upstream of the elbow and consequently re-disperse the transported particles, preventing them to focus on a single point at the elbow. Based on a four-way coupled simulation, the simulations were run for the new pipe wall design. To understand the nature of the erosive process on the new pipe wall design, the above-mentioned variables regarding the particle-wall interaction were evaluated. In general, it was found that the changes in the multiphase flow promoted by the twisted pipe wall are effective for reducing elbow erosion. The numerical simulations reveal that the pipeline equipped with a twisted pipe wall reduces the peak of erosion depth up to 33% on the elbow when compared to the conventional pipe.
id UFU_4584598ca8abf60e0971b8f04f9c6f41
oai_identifier_str oai:repositorio.ufu.br:123456789/18329
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Simulation of a new pipe design for erosion reduction in curvesEngenharia mecânicaDesgaste mecânicoTransporte por tubo pneumáticoAbordagem Euler-Lagrange URANSUma via, duas vias e quatro vias de acoplamentoModelagem da erosão em cotovelosÂngulo de impactoVelocidade de impactoEfeito de amortecimentoParede de tubo inovadoraMitigação de erosãoErosão ar-areiaEulerian-Lagrangian URANS approachOne-wayTwo-way and four-way couplingElbow erosion modelingParticle impact angleParticle impact velocityCushioning effectInnovative pipe wallErosion mitigationAir-sand erosionCNPQ::ENGENHARIAS::ENGENHARIA MECANICAPneumatically conveyed particles are commonly responsible for triggering the erosion process by impacts on the wall. Those impacts result from the fluid-particle interaction and understanding its mechanisms is the key to mitigate the erosion damage in engineering applications. In general, erosion due to particle impingement, which can occur in a variety of practical cases, is often the key factor in pipeline failure. Parts such as elbows, for instance, are particularly prone to erosion issues. In the first part of this thesis, the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are combined with a stochastic Lagrangian particle tracking scheme considering all relevant elementary processes (drag and lift forces, particle rotation, inter-particle collisions, particle-wall interactions, coupling between phases) to numerically predict the erosion phenomenon on a 90 elbow pipe. After a detailed validation of the erosion model based on the experimental data of Solnordal et al. (2015), several cases regarding the wall roughness and static and dynamic coefficients of friction are analysed to elucidate the nature of the erosive process. For such analysis, more fundamental variables related to particle-wall interactions (impact velocity, impact angle, impact frequency) were used to scrutinize the basic erosion mechanisms. Finally, to prove the importance of inter-particle collision on elbow erosion, different mass loadings are additionally simulated. Especially for the high mass loading cases, interesting results about the role of the inter-particle collisions on elbow erosion are enlightened. In a second step, we propose a novel pipe wall design in order to reduce the erosion on a 90 elbow. This design consists of twisting the pipe wall along the flow streamwise direction. Basically, such configuration generates a swirling motion of the flow upstream of the elbow and consequently re-disperse the transported particles, preventing them to focus on a single point at the elbow. Based on a four-way coupled simulation, the simulations were run for the new pipe wall design. To understand the nature of the erosive process on the new pipe wall design, the above-mentioned variables regarding the particle-wall interaction were evaluated. In general, it was found that the changes in the multiphase flow promoted by the twisted pipe wall are effective for reducing elbow erosion. The numerical simulations reveal that the pipeline equipped with a twisted pipe wall reduces the peak of erosion depth up to 33% on the elbow when compared to the conventional pipe.Tese (Doutorado)Partículas transportadas pneumaticamente são comumente responsáveis por desencadear o processo de erosão por impactos na parede. Esses impactos resultam da interação fluido-partícula e a compreensão de seus mecanismos é a chave para mitigar os danos causados pela erosão em aplicações de engenharia. Em geral, a erosão causada por impacto de partículas, que pode ocorrer em uma variedade de casos práticos, é frequentemente o fator principal na falha de tubulações. Acessórios como cotovelos, por exemplo, são particularmente propensos a problemas de erosão. Na primeira parte desta tese, as equações médias de Reynolds transiente (URANS) são combinadas com um modelo lagrangeano estocástico de rastreamento de partículas considerando todos os processos elementares relevantes (forças de arrasto e sustentação, rotação das partículas, colisões entre partículas, interações partícula-parede, acoplamento entre as fases) para predizer numericamente o fenômeno erosivo em um cotovelo de 90 . Após uma validação detalhada do modelo de erosão com base nos resultados experimentais de Solnordal et al. (2015), vários outros casos com diferentes rugosidades na parede e coeficientes de atrito estático e dinâmico são apresentados para elucidar a natureza do processo erosivo. Para tal análise, foram utilizadas variáveis mais fundamentais e que estão relacionadas às interações partículaparede (velocidade de impacto, ângulo de impacto, frequência de impacto) para examinar os mecanismos básicos de erosão. Finalmente, para provar a importância da colisão entre partículas na erosão do cotovelo, diferentes cargas mássicas são simuladas. Especialmente para os casos com carga mássica elevada, resultados interessantes sobre a importância das colisões entre partículas na erosão do cotovelo são abordados. Em uma segunda etapa, propomos um novo design para a parede da tubulação com o intuito de reduzir a erosão no cotovelo de 90 . Esta concepção consiste em torcer a parede do tubo ao longo do sentido principal do escoamento. Basicamente, tal configuração gera a rotação do fluido a montante do cotovelo e, consequentemente, re-dispersa as partículas transportadas, evitando que se concentrem diretamente em um único ponto no cotovelo. Com base em simulações com quatro vias de acoplamento, simulações são feitas para a configuração proposta. Para compreender a natureza do processo erosivo na nova geometria, as variáveis relativas as interações partícula-parede que foram mencionadas anteriormente também foram avaliadas. Em geral, verificou-se que as alterações no escoamento multifásico promovidas pela parede torcida são efetivas na redução da erosão no cotovelo. As simulações numéricas revelam que a tubulação equipada com o tubo torcido reduz o pico de profundidade de erosão no cotovelo em até 33% quando comparado ao tubo convencional.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia MecânicaSouza, Francisco José dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4703183Y4Silveira Neto, Aristeu dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781876D5Franco, Sinésio Domingueshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786105Z3Meier, Henry Françahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782278U4Noriler, Dirceuhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4762481H3Duarte, Carlos Antonio Ribeiro2017-04-06T13:24:27Z2017-04-06T13:24:27Z2017-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfDUARTE, Carlos Antonio Ribeiro. Simulation of a new pipe design for erosion reduction in curves. 2017. 179 f.Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2017. DOI http://dx.doi.org/10.14393/ufu.te.2017.85.https://repositorio.ufu.br/handle/123456789/18329http://dx.doi.org/10.14393/ufu.te.2017.85enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2019-02-11T17:15:12Zoai:repositorio.ufu.br:123456789/18329Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2019-02-11T17:15:12Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Simulation of a new pipe design for erosion reduction in curves
title Simulation of a new pipe design for erosion reduction in curves
spellingShingle Simulation of a new pipe design for erosion reduction in curves
Duarte, Carlos Antonio Ribeiro
Engenharia mecânica
Desgaste mecânico
Transporte por tubo pneumático
Abordagem Euler-Lagrange URANS
Uma via, duas vias e quatro vias de acoplamento
Modelagem da erosão em cotovelos
Ângulo de impacto
Velocidade de impacto
Efeito de amortecimento
Parede de tubo inovadora
Mitigação de erosão
Erosão ar-areia
Eulerian-Lagrangian URANS approach
One-way
Two-way and four-way coupling
Elbow erosion modeling
Particle impact angle
Particle impact velocity
Cushioning effect
Innovative pipe wall
Erosion mitigation
Air-sand erosion
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
title_short Simulation of a new pipe design for erosion reduction in curves
title_full Simulation of a new pipe design for erosion reduction in curves
title_fullStr Simulation of a new pipe design for erosion reduction in curves
title_full_unstemmed Simulation of a new pipe design for erosion reduction in curves
title_sort Simulation of a new pipe design for erosion reduction in curves
author Duarte, Carlos Antonio Ribeiro
author_facet Duarte, Carlos Antonio Ribeiro
author_role author
dc.contributor.none.fl_str_mv Souza, Francisco José de
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4703183Y4
Silveira Neto, Aristeu da
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781876D5
Franco, Sinésio Domingues
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786105Z3
Meier, Henry França
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782278U4
Noriler, Dirceu
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4762481H3
dc.contributor.author.fl_str_mv Duarte, Carlos Antonio Ribeiro
dc.subject.por.fl_str_mv Engenharia mecânica
Desgaste mecânico
Transporte por tubo pneumático
Abordagem Euler-Lagrange URANS
Uma via, duas vias e quatro vias de acoplamento
Modelagem da erosão em cotovelos
Ângulo de impacto
Velocidade de impacto
Efeito de amortecimento
Parede de tubo inovadora
Mitigação de erosão
Erosão ar-areia
Eulerian-Lagrangian URANS approach
One-way
Two-way and four-way coupling
Elbow erosion modeling
Particle impact angle
Particle impact velocity
Cushioning effect
Innovative pipe wall
Erosion mitigation
Air-sand erosion
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
topic Engenharia mecânica
Desgaste mecânico
Transporte por tubo pneumático
Abordagem Euler-Lagrange URANS
Uma via, duas vias e quatro vias de acoplamento
Modelagem da erosão em cotovelos
Ângulo de impacto
Velocidade de impacto
Efeito de amortecimento
Parede de tubo inovadora
Mitigação de erosão
Erosão ar-areia
Eulerian-Lagrangian URANS approach
One-way
Two-way and four-way coupling
Elbow erosion modeling
Particle impact angle
Particle impact velocity
Cushioning effect
Innovative pipe wall
Erosion mitigation
Air-sand erosion
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
description Pneumatically conveyed particles are commonly responsible for triggering the erosion process by impacts on the wall. Those impacts result from the fluid-particle interaction and understanding its mechanisms is the key to mitigate the erosion damage in engineering applications. In general, erosion due to particle impingement, which can occur in a variety of practical cases, is often the key factor in pipeline failure. Parts such as elbows, for instance, are particularly prone to erosion issues. In the first part of this thesis, the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are combined with a stochastic Lagrangian particle tracking scheme considering all relevant elementary processes (drag and lift forces, particle rotation, inter-particle collisions, particle-wall interactions, coupling between phases) to numerically predict the erosion phenomenon on a 90 elbow pipe. After a detailed validation of the erosion model based on the experimental data of Solnordal et al. (2015), several cases regarding the wall roughness and static and dynamic coefficients of friction are analysed to elucidate the nature of the erosive process. For such analysis, more fundamental variables related to particle-wall interactions (impact velocity, impact angle, impact frequency) were used to scrutinize the basic erosion mechanisms. Finally, to prove the importance of inter-particle collision on elbow erosion, different mass loadings are additionally simulated. Especially for the high mass loading cases, interesting results about the role of the inter-particle collisions on elbow erosion are enlightened. In a second step, we propose a novel pipe wall design in order to reduce the erosion on a 90 elbow. This design consists of twisting the pipe wall along the flow streamwise direction. Basically, such configuration generates a swirling motion of the flow upstream of the elbow and consequently re-disperse the transported particles, preventing them to focus on a single point at the elbow. Based on a four-way coupled simulation, the simulations were run for the new pipe wall design. To understand the nature of the erosive process on the new pipe wall design, the above-mentioned variables regarding the particle-wall interaction were evaluated. In general, it was found that the changes in the multiphase flow promoted by the twisted pipe wall are effective for reducing elbow erosion. The numerical simulations reveal that the pipeline equipped with a twisted pipe wall reduces the peak of erosion depth up to 33% on the elbow when compared to the conventional pipe.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-06T13:24:27Z
2017-04-06T13:24:27Z
2017-03-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv DUARTE, Carlos Antonio Ribeiro. Simulation of a new pipe design for erosion reduction in curves. 2017. 179 f.Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2017. DOI http://dx.doi.org/10.14393/ufu.te.2017.85.
https://repositorio.ufu.br/handle/123456789/18329
http://dx.doi.org/10.14393/ufu.te.2017.85
identifier_str_mv DUARTE, Carlos Antonio Ribeiro. Simulation of a new pipe design for erosion reduction in curves. 2017. 179 f.Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2017. DOI http://dx.doi.org/10.14393/ufu.te.2017.85.
url https://repositorio.ufu.br/handle/123456789/18329
http://dx.doi.org/10.14393/ufu.te.2017.85
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711604999520256