Detecção de Planococcus citri em cafeeiro por imagens multiespectrais

Detalhes bibliográficos
Autor(a) principal: Rossati, Kamila Fernanda
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/36077
http://doi.org/10.14393/ufu.di.2022.425
Resumo: Coffee growing provides around 125 million jobs. In the coffee plant, the mealybug Planoccous citri is found in reboleiras, and can infest branches, leaves, flower buds and fruits, reaching the point of infesting all the rosettes of the plant and leading to partial stunting or total loss of these branches. Sampling is not performed due to the cost and time required for this practice, so the applications occur in the total area. In this way, it is necessary to introduce technologies that allow the provision of information for better decision-making in its management. The objective of this study was to verify the potential of using low-cost multispectral images in the discrimination of coffee plants infested by P. citri. Three study areas were used, the first in the municipality of Coromandel, MG, one with a high infestation of cochineal and the second with no cochineal and an area in the municipality of Monte Carmelo, MG, with presence and absence of cochineal in the evaluated plants. . In each study area, 50 plants were randomly sampled, with a minimum distance of 10 meters between plants, evaluating the amount of mealybugs present in 2 plagiotropic branches located in the middle third of the plants. The images were obtained using a drone coupled to a Mapir Survey 3W camera at a height of 100 meters. The classifications were made using the algorithms Artificial Neural Networks (ANN), Support Vector Machine (SMO) and Random Forests. The results confirmed the possibility of discrimination between healthy and P. citri infested plants using algorithms based on machine learning. Regarding the discrimination of healthy and infested plants, the Random Forest algorithm showed the best result in areas with infestation variability (EG=90% and K=0.80), followed by SMO (EG=83.34% and K= 0.67) and RNA (EG=73.34% and K=0.47).
id UFU_5313cc29ebd059223229ee16749a1900
oai_identifier_str oai:repositorio.ufu.br:123456789/36077
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Detecção de Planococcus citri em cafeeiro por imagens multiespectraisDetection of Planococcus citri in coffee by multispectral imagesaprendizado de máquinacafeiculturacochonilha-da-rosetadetecção de pragasimgens multiespectraismachine learningcoffee growingrosette mealybugpest detectionmultiespectral imagingCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::ENTOMOLOGIA AGRICOLAAgronomiaCafé - CultivoCochonilha - Imagens multiespectraisCafé - Doenças e pragasCoffee growing provides around 125 million jobs. In the coffee plant, the mealybug Planoccous citri is found in reboleiras, and can infest branches, leaves, flower buds and fruits, reaching the point of infesting all the rosettes of the plant and leading to partial stunting or total loss of these branches. Sampling is not performed due to the cost and time required for this practice, so the applications occur in the total area. In this way, it is necessary to introduce technologies that allow the provision of information for better decision-making in its management. The objective of this study was to verify the potential of using low-cost multispectral images in the discrimination of coffee plants infested by P. citri. Three study areas were used, the first in the municipality of Coromandel, MG, one with a high infestation of cochineal and the second with no cochineal and an area in the municipality of Monte Carmelo, MG, with presence and absence of cochineal in the evaluated plants. . In each study area, 50 plants were randomly sampled, with a minimum distance of 10 meters between plants, evaluating the amount of mealybugs present in 2 plagiotropic branches located in the middle third of the plants. The images were obtained using a drone coupled to a Mapir Survey 3W camera at a height of 100 meters. The classifications were made using the algorithms Artificial Neural Networks (ANN), Support Vector Machine (SMO) and Random Forests. The results confirmed the possibility of discrimination between healthy and P. citri infested plants using algorithms based on machine learning. Regarding the discrimination of healthy and infested plants, the Random Forest algorithm showed the best result in areas with infestation variability (EG=90% and K=0.80), followed by SMO (EG=83.34% and K= 0.67) and RNA (EG=73.34% and K=0.47).Dissertação (Mestrado)A cultura do cafeeiro proporciona cerca de 125 milhões de empregos. No cafeeiro a cochonilha Planoccous citri é encontrada em reboleiras, e podem infestar ramos, folhas, botões florais e frutos, chegando a infestar todas as rosetas da planta e levando ao chochamento parcial ou perda total destes ramos. A amostragem não é realizada em função do custo e do tempo demandado para essa prática, por isso as aplicações ocorrem em área total. Dessa forma se faz necessário a introdução de tecnologias que possibilitem o fornecimento de informações para a melhor tomada de decisão no seu manejo. O estudo teve-se como objetivo verificar o potencial de uso de imagens multiespectrais de baixo custo na discriminação de plantas de cafeeiro infestadas por P. citri. Foram utilizadas três áreas de estudo, sendo a primeira no município de Coromandel, MG, uma com alta infestação de cochonilha e a segunda com ausência de cochonilha e uma área no município de Monte Carmelo, MG, com presença e ausência de cochonilha nas plantas avaliadas. Em cada área de estudo foram amostradas aleatoriamente 50 plantas, com distância mínima de 10 metros entre plantas, avaliando a quantidade de cochonilhas presentes em 2 ramos plagiotrópicos localizados no terço médio das plantas. As imagens foram obtidas utilizando um drone acoplado a uma câmera Mapir Survey 3W a uma altura de 100 metros. As classificações foram feitas utilizando os algoritmos Redes Neurais Artificiais (RNA), Support Vector Machine (SMO) e Florestas Aleatórias. Os resultados confirmaram a possibilidade de discriminação entre plantas sadias e infestadas por P. citri utilizando algoritmos baseados em aprendizado de máquina. Com relação à discriminação de plantas sadias e infestadas, o algoritmo Random Forest apresentou o melhor resultado em áreas com variabilidade de infestação (EG=90% e K=0,80), seguido pelo SMO (EG=83,34% e K=0,67) e RNA (EG=73,34% e K= 0,47).Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Agricultura e Informações GeoespaciaisMartins, George Derocohttp://lattes.cnpq.br/3672769708388118Carvalho, Vanessa Andaló Mendes dehttp://lattes.cnpq.br/8132224406035792Fernandes, Flávio Lemeshttp://lattes.cnpq.br/8115127075994601Rossati, Kamila Fernanda2022-09-14T17:45:43Z2022-09-14T17:45:43Z2022-07-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfROSSATI, Kamila Fernanda. Detecção de Planococcus citri em cafeeiro por imagens multiespectrais. 2022. 39 f. Dissertação (Mestrado em Agricultura e Informações Geoespaciais) - Universidade Federal de Uberlândia, Monte Carmelo, 2022. DOI http://doi.org/10.14393/ufu.di.2022.425https://repositorio.ufu.br/handle/123456789/36077http://doi.org/10.14393/ufu.di.2022.425porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-01-03T14:13:29Zoai:repositorio.ufu.br:123456789/36077Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-01-03T14:13:29Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
Detection of Planococcus citri in coffee by multispectral images
title Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
spellingShingle Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
Rossati, Kamila Fernanda
aprendizado de máquina
cafeicultura
cochonilha-da-roseta
detecção de pragas
imgens multiespectrais
machine learning
coffee growing
rosette mealybug
pest detection
multiespectral imaging
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::ENTOMOLOGIA AGRICOLA
Agronomia
Café - Cultivo
Cochonilha - Imagens multiespectrais
Café - Doenças e pragas
title_short Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
title_full Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
title_fullStr Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
title_full_unstemmed Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
title_sort Detecção de Planococcus citri em cafeeiro por imagens multiespectrais
author Rossati, Kamila Fernanda
author_facet Rossati, Kamila Fernanda
author_role author
dc.contributor.none.fl_str_mv Martins, George Deroco
http://lattes.cnpq.br/3672769708388118
Carvalho, Vanessa Andaló Mendes de
http://lattes.cnpq.br/8132224406035792
Fernandes, Flávio Lemes
http://lattes.cnpq.br/8115127075994601
dc.contributor.author.fl_str_mv Rossati, Kamila Fernanda
dc.subject.por.fl_str_mv aprendizado de máquina
cafeicultura
cochonilha-da-roseta
detecção de pragas
imgens multiespectrais
machine learning
coffee growing
rosette mealybug
pest detection
multiespectral imaging
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::ENTOMOLOGIA AGRICOLA
Agronomia
Café - Cultivo
Cochonilha - Imagens multiespectrais
Café - Doenças e pragas
topic aprendizado de máquina
cafeicultura
cochonilha-da-roseta
detecção de pragas
imgens multiespectrais
machine learning
coffee growing
rosette mealybug
pest detection
multiespectral imaging
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::ENTOMOLOGIA AGRICOLA
Agronomia
Café - Cultivo
Cochonilha - Imagens multiespectrais
Café - Doenças e pragas
description Coffee growing provides around 125 million jobs. In the coffee plant, the mealybug Planoccous citri is found in reboleiras, and can infest branches, leaves, flower buds and fruits, reaching the point of infesting all the rosettes of the plant and leading to partial stunting or total loss of these branches. Sampling is not performed due to the cost and time required for this practice, so the applications occur in the total area. In this way, it is necessary to introduce technologies that allow the provision of information for better decision-making in its management. The objective of this study was to verify the potential of using low-cost multispectral images in the discrimination of coffee plants infested by P. citri. Three study areas were used, the first in the municipality of Coromandel, MG, one with a high infestation of cochineal and the second with no cochineal and an area in the municipality of Monte Carmelo, MG, with presence and absence of cochineal in the evaluated plants. . In each study area, 50 plants were randomly sampled, with a minimum distance of 10 meters between plants, evaluating the amount of mealybugs present in 2 plagiotropic branches located in the middle third of the plants. The images were obtained using a drone coupled to a Mapir Survey 3W camera at a height of 100 meters. The classifications were made using the algorithms Artificial Neural Networks (ANN), Support Vector Machine (SMO) and Random Forests. The results confirmed the possibility of discrimination between healthy and P. citri infested plants using algorithms based on machine learning. Regarding the discrimination of healthy and infested plants, the Random Forest algorithm showed the best result in areas with infestation variability (EG=90% and K=0.80), followed by SMO (EG=83.34% and K= 0.67) and RNA (EG=73.34% and K=0.47).
publishDate 2022
dc.date.none.fl_str_mv 2022-09-14T17:45:43Z
2022-09-14T17:45:43Z
2022-07-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ROSSATI, Kamila Fernanda. Detecção de Planococcus citri em cafeeiro por imagens multiespectrais. 2022. 39 f. Dissertação (Mestrado em Agricultura e Informações Geoespaciais) - Universidade Federal de Uberlândia, Monte Carmelo, 2022. DOI http://doi.org/10.14393/ufu.di.2022.425
https://repositorio.ufu.br/handle/123456789/36077
http://doi.org/10.14393/ufu.di.2022.425
identifier_str_mv ROSSATI, Kamila Fernanda. Detecção de Planococcus citri em cafeeiro por imagens multiespectrais. 2022. 39 f. Dissertação (Mestrado em Agricultura e Informações Geoespaciais) - Universidade Federal de Uberlândia, Monte Carmelo, 2022. DOI http://doi.org/10.14393/ufu.di.2022.425
url https://repositorio.ufu.br/handle/123456789/36077
http://doi.org/10.14393/ufu.di.2022.425
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Agricultura e Informações Geoespaciais
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Agricultura e Informações Geoespaciais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711459631235072