Poliedros regulares e semirregulares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/40981 |
Resumo: | In this Undergraduate Final Project we present a study of the five regular polyhedra (or Platonic Solids) and the thirteen semi-regular polyhedra (or Archimedean Solids). This study was divided into two parts: theoretical part, with deductions from formulas and classification of above polyhedra and; practical part, with the dynamic construction of semi-regular polyhedra from regular polyhedra using the GeoGebra software. It is important to emphasize the impossibility of dynamically constructing semi-regular polyhedra in GeoGebra without some of the formulas related to regular polyhedra that were deduced in the theoretical part. The formulas deduced were: (i) Euler Relation for convex polyhedra; (ii) measurements of the central and dihedral angles of a regular polyhedron depending on its genus of faces and its genus of vertices; (iii) radii of spheres inscribed and circumscribed by a regular polyhedron depending on the genus of faces, the genus of vertices and the length of the edges; (iv) apothem and radius of the circle circumscribed to the face of a regular polyhedron depending on its genus of faces and its edge length and; (v) area and volume of a regular polyhedron as a function of its genus of faces, its genus of vertices, its number of faces and its edge length. It is also important to highlight that the constructions of semi-regular polyhedra were made through three geometric operations on regular polyhedra: (1) simple truncation; (2) composite truncation and; (3) snubification. In this work we hope to be able to contribute to the theory of regular and semi-regular polyhedra, as well as the dynamic geometric constructions of such polyhedra in the GeoGebra software |
id |
UFU_5dacf6dec0930222ad70498db76ca193 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/40981 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Poliedros regulares e semirregularesRegular and semiregular polyhedraClassificação de poliedrosClassification of polyhedraGeoGebraGeometria dinâmicaDynamic geometryTruncamentoTruncationCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIAIn this Undergraduate Final Project we present a study of the five regular polyhedra (or Platonic Solids) and the thirteen semi-regular polyhedra (or Archimedean Solids). This study was divided into two parts: theoretical part, with deductions from formulas and classification of above polyhedra and; practical part, with the dynamic construction of semi-regular polyhedra from regular polyhedra using the GeoGebra software. It is important to emphasize the impossibility of dynamically constructing semi-regular polyhedra in GeoGebra without some of the formulas related to regular polyhedra that were deduced in the theoretical part. The formulas deduced were: (i) Euler Relation for convex polyhedra; (ii) measurements of the central and dihedral angles of a regular polyhedron depending on its genus of faces and its genus of vertices; (iii) radii of spheres inscribed and circumscribed by a regular polyhedron depending on the genus of faces, the genus of vertices and the length of the edges; (iv) apothem and radius of the circle circumscribed to the face of a regular polyhedron depending on its genus of faces and its edge length and; (v) area and volume of a regular polyhedron as a function of its genus of faces, its genus of vertices, its number of faces and its edge length. It is also important to highlight that the constructions of semi-regular polyhedra were made through three geometric operations on regular polyhedra: (1) simple truncation; (2) composite truncation and; (3) snubification. In this work we hope to be able to contribute to the theory of regular and semi-regular polyhedra, as well as the dynamic geometric constructions of such polyhedra in the GeoGebra softwarePesquisa sem auxílio de agências de fomentoTrabalho de Conclusão de Curso (Graduação)Neste Trabalho de Conclusão de Curso apresentamos um estudo dos cinco poliedros regulares (ou Poliedros de Platão) e dos treze poliedros semirregulares (ou Poliedros de Arquimedes). Tal estudo foi dividido em duas partes: parte teórica, com deduções de fórmulas e classificação dos referidos poliedros e; parte prática, com a construção dinâmica dos poliedros semirregulares a partir dos poliedros regulares utilizando o software GeoGebra. É importante enfatizar a impossibilidade de se construir dinamicamente os poliedros semirregulares no GeoGebra sem algumas das fórmulas relacionadas aos poliedros regulares que foram deduzidas na parte teórica. As fórmulas deduzidas foram: (i) Relação de Euler para poliedros convexos; (ii) medidas dos ângulos central e diedral de poliedro regular em função de seu gênero de faces e de seu gênero de vértices; (iii) raios de esferas inscrita e circunscrita a poliedro regular em função de seu gênero de faces, de seu gênero de vértices e de seu comprimento de arestas; (iv) apótema e raio de círculo circunscrito à face de poliedro regular em função de seu gênero de faces e de seu comprimento de arestas e; (v) área e volume de poliedro regular em função de seu gênero de faces, de seu gênero de vértices, de seu número de faces e de seu comprimento de arestas. Também é importante ressaltar que as construções dos poliedros semirregulares foram feitas por meio de três operações geométricas sobre os poliedros regulares: (1) truncamento simples; (2) truncamento composto e; (3) snubificação. Neste trabalho temos a expectativa de poder contruibuir na teoria dos poliedros regulares e semirregulares, bem como nas construções geométricas dinâmicas de tais poliedros no software GeoGebra.Universidade Federal de UberlândiaBrasilMatemáticaAgustini, Edsonhttp://lattes.cnpq.br/1537249856486330Marin, Douglashttp://lattes.cnpq.br/6734500640303971Lopes, Érika Maria Chiocahttp://lattes.cnpq.br/0024613652139150Resende, Luana Pimenta Muniz de2024-01-16T12:46:45Z2024-01-16T12:46:45Z2023-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfRESENDE, Luana Pimenta Muniz de. Poliedros regulares e semirregulares. 2023. 99 f. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de Uberlândia, Uberlândia, 2024.https://repositorio.ufu.br/handle/123456789/40981porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-01-17T06:17:23Zoai:repositorio.ufu.br:123456789/40981Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-01-17T06:17:23Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Poliedros regulares e semirregulares Regular and semiregular polyhedra |
title |
Poliedros regulares e semirregulares |
spellingShingle |
Poliedros regulares e semirregulares Resende, Luana Pimenta Muniz de Classificação de poliedros Classification of polyhedra GeoGebra Geometria dinâmica Dynamic geometry Truncamento Truncation CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
title_short |
Poliedros regulares e semirregulares |
title_full |
Poliedros regulares e semirregulares |
title_fullStr |
Poliedros regulares e semirregulares |
title_full_unstemmed |
Poliedros regulares e semirregulares |
title_sort |
Poliedros regulares e semirregulares |
author |
Resende, Luana Pimenta Muniz de |
author_facet |
Resende, Luana Pimenta Muniz de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Agustini, Edson http://lattes.cnpq.br/1537249856486330 Marin, Douglas http://lattes.cnpq.br/6734500640303971 Lopes, Érika Maria Chioca http://lattes.cnpq.br/0024613652139150 |
dc.contributor.author.fl_str_mv |
Resende, Luana Pimenta Muniz de |
dc.subject.por.fl_str_mv |
Classificação de poliedros Classification of polyhedra GeoGebra Geometria dinâmica Dynamic geometry Truncamento Truncation CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
topic |
Classificação de poliedros Classification of polyhedra GeoGebra Geometria dinâmica Dynamic geometry Truncamento Truncation CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
description |
In this Undergraduate Final Project we present a study of the five regular polyhedra (or Platonic Solids) and the thirteen semi-regular polyhedra (or Archimedean Solids). This study was divided into two parts: theoretical part, with deductions from formulas and classification of above polyhedra and; practical part, with the dynamic construction of semi-regular polyhedra from regular polyhedra using the GeoGebra software. It is important to emphasize the impossibility of dynamically constructing semi-regular polyhedra in GeoGebra without some of the formulas related to regular polyhedra that were deduced in the theoretical part. The formulas deduced were: (i) Euler Relation for convex polyhedra; (ii) measurements of the central and dihedral angles of a regular polyhedron depending on its genus of faces and its genus of vertices; (iii) radii of spheres inscribed and circumscribed by a regular polyhedron depending on the genus of faces, the genus of vertices and the length of the edges; (iv) apothem and radius of the circle circumscribed to the face of a regular polyhedron depending on its genus of faces and its edge length and; (v) area and volume of a regular polyhedron as a function of its genus of faces, its genus of vertices, its number of faces and its edge length. It is also important to highlight that the constructions of semi-regular polyhedra were made through three geometric operations on regular polyhedra: (1) simple truncation; (2) composite truncation and; (3) snubification. In this work we hope to be able to contribute to the theory of regular and semi-regular polyhedra, as well as the dynamic geometric constructions of such polyhedra in the GeoGebra software |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-01 2024-01-16T12:46:45Z 2024-01-16T12:46:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RESENDE, Luana Pimenta Muniz de. Poliedros regulares e semirregulares. 2023. 99 f. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de Uberlândia, Uberlândia, 2024. https://repositorio.ufu.br/handle/123456789/40981 |
identifier_str_mv |
RESENDE, Luana Pimenta Muniz de. Poliedros regulares e semirregulares. 2023. 99 f. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de Uberlândia, Uberlândia, 2024. |
url |
https://repositorio.ufu.br/handle/123456789/40981 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Matemática |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Matemática |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711513352929280 |