Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet

Detalhes bibliográficos
Autor(a) principal: Sousa, Pedro Moises de
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/35410
http://doi.org/10.14393/ufu.te.2022.433
Resumo: The outbreak of the COVID-19 pandemic has motivated massive worldwide efforts to tackle the problem, such as the simplification of protocols for accessing data repositories and metadata of the new virus and the disease. Searches for research suggest in several areas from biochemical, biological research, serological investigation to genetic engineering and information technology. In the artificial intelligence filed, deep learning techniques were used in search of support tools that would contribute to facing the pandemic. The possibility of reducing errors in the analysis of chest radiological images was a goal of such research, as they complemented the medical examination of the disease. Thus, the pandemic was the first motivation for the creation of the WCNN model and the second motivation was the observation of the use of techniques for resizing medical images to adapt to ready-made models in the literature, which can cause distortions or loss of information in the detection. of the dis-ease under study. WCNN was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a custom input layer, called Wave Layer, which processes the images without resizing them. To assess WCNN, an experiment was performed that exemplifies its behavior, using a set of chest CT images from patients diagnosed with COVID-19 and other lung infections. The result of the metrics Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were 0.9819, 0.9783 and 0.98, respectively. Hence, it can be concluded that these expressive results indicate that the association of CNNs and wavelet transforms is promising for the creation of classification models.
id UFU_8385db12d31ac8e19b00fe970eb3ff46
oai_identifier_str oai:repositorio.ufu.br:123456789/35410
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada WaveletRadiological image classification strategies using convolutional neural networks and Wavelet transformradiografias de tóraximagens de CTredes neurais convolucionaisCOVID- 19waveletsWCNNchest X-rayCT scans imagesconvolutional neural networksCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEngenharia elétricaTórax - RadiografiaRedes neurais (Computação)Wavelets (Matemática)The outbreak of the COVID-19 pandemic has motivated massive worldwide efforts to tackle the problem, such as the simplification of protocols for accessing data repositories and metadata of the new virus and the disease. Searches for research suggest in several areas from biochemical, biological research, serological investigation to genetic engineering and information technology. In the artificial intelligence filed, deep learning techniques were used in search of support tools that would contribute to facing the pandemic. The possibility of reducing errors in the analysis of chest radiological images was a goal of such research, as they complemented the medical examination of the disease. Thus, the pandemic was the first motivation for the creation of the WCNN model and the second motivation was the observation of the use of techniques for resizing medical images to adapt to ready-made models in the literature, which can cause distortions or loss of information in the detection. of the dis-ease under study. WCNN was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a custom input layer, called Wave Layer, which processes the images without resizing them. To assess WCNN, an experiment was performed that exemplifies its behavior, using a set of chest CT images from patients diagnosed with COVID-19 and other lung infections. The result of the metrics Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were 0.9819, 0.9783 and 0.98, respectively. Hence, it can be concluded that these expressive results indicate that the association of CNNs and wavelet transforms is promising for the creation of classification models.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)A irrupção pandêmica de COVID-19 motivou a efetivação mundial de esforços maciços para enfrentar o problema, como a simplificação de protocolos de acesso a repositórios de dados e metadados do novo vírus e da doença. As buscas por pesquisas sugiram em diversas áreas desde pesquisas bioquímicas, biológicas, investigação sorológica até engenharia genética e tecnologia da informação. Na área da inteligência artificial, as técnicas de deep learning foram utilizadas em busca de ferramentas de apoio que contribuíssem para o enfrentamento da pandemia. A possibilidade de reduzir erros da análise das imagens radiológicas de tórax era uma finalidade, pois elas complementavam o exame médico da doença. Assim, a pandemia foi a primeira motivação para a criação do modelo WCNN (Wavelet Convolutional Neural Network) e a segunda motivação foi a observação do uso de técnicas de redimensionamento das imagens médicas para se adequarem a modelos prontos da literatura, o que pode causar distorções ou perda de informações na detecção da doença em estudo. WCNN foi baseado em uma Rede Neural Convolucional (CNN) e transformada wavelet. O modelo propõe uma camada de entrada customizada, chamada Wave Layer, que processa as imagens sem redimensioná-las. Para avaliar a WCNN, foi realizado um experimento que exemplifica seu comportamento, utilizando um conjunto de imagens de TC de tórax de pacientes diagnosticados com COVID-19 e outras infecções pulmonares. O resultado das métricas Acurácia (ACC), Sensibilidade (Sen) e Especificidade (Sp) foram 0,9819, 0,9783 e 0,98, respectivamente. Daí conclui-se que estes resultados expressivos indicam que a associação de CNNs e transformadas wavelets é promissora para a criação de modelos de classificação.2024-08-04Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaPatrocinio, Ana Claudiahttp://lattes.cnpq.br/7277318969645668Andrade, Adriano de Oliveirahttp://lattes.cnpq.br/1229329519982110Macedo, Tulio Augusto Alveshttp://lattes.cnpq.br/9401226269919114da Silva, Ana Maria Marqueshttp://lattes.cnpq.br/5375482124482980Ferreira, Júlio Césarhttp://lattes.cnpq.br/8909334567319212Sousa, Pedro Moises de2022-08-08T17:58:16Z2022-08-08T17:58:16Z2022-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUSA, Pedro Moises de. Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet. 2022. 173 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.433.https://repositorio.ufu.br/handle/123456789/35410http://doi.org/10.14393/ufu.te.2022.433porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-05T17:44:21Zoai:repositorio.ufu.br:123456789/35410Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-05T17:44:21Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
Radiological image classification strategies using convolutional neural networks and Wavelet transform
title Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
spellingShingle Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
Sousa, Pedro Moises de
radiografias de tórax
imagens de CT
redes neurais convolucionais
COVID- 19
wavelets
WCNN
chest X-ray
CT scans images
convolutional neural networks
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Engenharia elétrica
Tórax - Radiografia
Redes neurais (Computação)
Wavelets (Matemática)
title_short Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
title_full Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
title_fullStr Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
title_full_unstemmed Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
title_sort Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
author Sousa, Pedro Moises de
author_facet Sousa, Pedro Moises de
author_role author
dc.contributor.none.fl_str_mv Patrocinio, Ana Claudia
http://lattes.cnpq.br/7277318969645668
Andrade, Adriano de Oliveira
http://lattes.cnpq.br/1229329519982110
Macedo, Tulio Augusto Alves
http://lattes.cnpq.br/9401226269919114
da Silva, Ana Maria Marques
http://lattes.cnpq.br/5375482124482980
Ferreira, Júlio César
http://lattes.cnpq.br/8909334567319212
dc.contributor.author.fl_str_mv Sousa, Pedro Moises de
dc.subject.por.fl_str_mv radiografias de tórax
imagens de CT
redes neurais convolucionais
COVID- 19
wavelets
WCNN
chest X-ray
CT scans images
convolutional neural networks
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Engenharia elétrica
Tórax - Radiografia
Redes neurais (Computação)
Wavelets (Matemática)
topic radiografias de tórax
imagens de CT
redes neurais convolucionais
COVID- 19
wavelets
WCNN
chest X-ray
CT scans images
convolutional neural networks
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Engenharia elétrica
Tórax - Radiografia
Redes neurais (Computação)
Wavelets (Matemática)
description The outbreak of the COVID-19 pandemic has motivated massive worldwide efforts to tackle the problem, such as the simplification of protocols for accessing data repositories and metadata of the new virus and the disease. Searches for research suggest in several areas from biochemical, biological research, serological investigation to genetic engineering and information technology. In the artificial intelligence filed, deep learning techniques were used in search of support tools that would contribute to facing the pandemic. The possibility of reducing errors in the analysis of chest radiological images was a goal of such research, as they complemented the medical examination of the disease. Thus, the pandemic was the first motivation for the creation of the WCNN model and the second motivation was the observation of the use of techniques for resizing medical images to adapt to ready-made models in the literature, which can cause distortions or loss of information in the detection. of the dis-ease under study. WCNN was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a custom input layer, called Wave Layer, which processes the images without resizing them. To assess WCNN, an experiment was performed that exemplifies its behavior, using a set of chest CT images from patients diagnosed with COVID-19 and other lung infections. The result of the metrics Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were 0.9819, 0.9783 and 0.98, respectively. Hence, it can be concluded that these expressive results indicate that the association of CNNs and wavelet transforms is promising for the creation of classification models.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-08T17:58:16Z
2022-08-08T17:58:16Z
2022-07-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUSA, Pedro Moises de. Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet. 2022. 173 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.433.
https://repositorio.ufu.br/handle/123456789/35410
http://doi.org/10.14393/ufu.te.2022.433
identifier_str_mv SOUSA, Pedro Moises de. Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet. 2022. 173 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.433.
url https://repositorio.ufu.br/handle/123456789/35410
http://doi.org/10.14393/ufu.te.2022.433
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711290573520896