Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/35410 http://doi.org/10.14393/ufu.te.2022.433 |
Resumo: | The outbreak of the COVID-19 pandemic has motivated massive worldwide efforts to tackle the problem, such as the simplification of protocols for accessing data repositories and metadata of the new virus and the disease. Searches for research suggest in several areas from biochemical, biological research, serological investigation to genetic engineering and information technology. In the artificial intelligence filed, deep learning techniques were used in search of support tools that would contribute to facing the pandemic. The possibility of reducing errors in the analysis of chest radiological images was a goal of such research, as they complemented the medical examination of the disease. Thus, the pandemic was the first motivation for the creation of the WCNN model and the second motivation was the observation of the use of techniques for resizing medical images to adapt to ready-made models in the literature, which can cause distortions or loss of information in the detection. of the dis-ease under study. WCNN was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a custom input layer, called Wave Layer, which processes the images without resizing them. To assess WCNN, an experiment was performed that exemplifies its behavior, using a set of chest CT images from patients diagnosed with COVID-19 and other lung infections. The result of the metrics Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were 0.9819, 0.9783 and 0.98, respectively. Hence, it can be concluded that these expressive results indicate that the association of CNNs and wavelet transforms is promising for the creation of classification models. |
id |
UFU_8385db12d31ac8e19b00fe970eb3ff46 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/35410 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada WaveletRadiological image classification strategies using convolutional neural networks and Wavelet transformradiografias de tóraximagens de CTredes neurais convolucionaisCOVID- 19waveletsWCNNchest X-rayCT scans imagesconvolutional neural networksCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEngenharia elétricaTórax - RadiografiaRedes neurais (Computação)Wavelets (Matemática)The outbreak of the COVID-19 pandemic has motivated massive worldwide efforts to tackle the problem, such as the simplification of protocols for accessing data repositories and metadata of the new virus and the disease. Searches for research suggest in several areas from biochemical, biological research, serological investigation to genetic engineering and information technology. In the artificial intelligence filed, deep learning techniques were used in search of support tools that would contribute to facing the pandemic. The possibility of reducing errors in the analysis of chest radiological images was a goal of such research, as they complemented the medical examination of the disease. Thus, the pandemic was the first motivation for the creation of the WCNN model and the second motivation was the observation of the use of techniques for resizing medical images to adapt to ready-made models in the literature, which can cause distortions or loss of information in the detection. of the dis-ease under study. WCNN was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a custom input layer, called Wave Layer, which processes the images without resizing them. To assess WCNN, an experiment was performed that exemplifies its behavior, using a set of chest CT images from patients diagnosed with COVID-19 and other lung infections. The result of the metrics Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were 0.9819, 0.9783 and 0.98, respectively. Hence, it can be concluded that these expressive results indicate that the association of CNNs and wavelet transforms is promising for the creation of classification models.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)A irrupção pandêmica de COVID-19 motivou a efetivação mundial de esforços maciços para enfrentar o problema, como a simplificação de protocolos de acesso a repositórios de dados e metadados do novo vírus e da doença. As buscas por pesquisas sugiram em diversas áreas desde pesquisas bioquímicas, biológicas, investigação sorológica até engenharia genética e tecnologia da informação. Na área da inteligência artificial, as técnicas de deep learning foram utilizadas em busca de ferramentas de apoio que contribuíssem para o enfrentamento da pandemia. A possibilidade de reduzir erros da análise das imagens radiológicas de tórax era uma finalidade, pois elas complementavam o exame médico da doença. Assim, a pandemia foi a primeira motivação para a criação do modelo WCNN (Wavelet Convolutional Neural Network) e a segunda motivação foi a observação do uso de técnicas de redimensionamento das imagens médicas para se adequarem a modelos prontos da literatura, o que pode causar distorções ou perda de informações na detecção da doença em estudo. WCNN foi baseado em uma Rede Neural Convolucional (CNN) e transformada wavelet. O modelo propõe uma camada de entrada customizada, chamada Wave Layer, que processa as imagens sem redimensioná-las. Para avaliar a WCNN, foi realizado um experimento que exemplifica seu comportamento, utilizando um conjunto de imagens de TC de tórax de pacientes diagnosticados com COVID-19 e outras infecções pulmonares. O resultado das métricas Acurácia (ACC), Sensibilidade (Sen) e Especificidade (Sp) foram 0,9819, 0,9783 e 0,98, respectivamente. Daí conclui-se que estes resultados expressivos indicam que a associação de CNNs e transformadas wavelets é promissora para a criação de modelos de classificação.2024-08-04Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaPatrocinio, Ana Claudiahttp://lattes.cnpq.br/7277318969645668Andrade, Adriano de Oliveirahttp://lattes.cnpq.br/1229329519982110Macedo, Tulio Augusto Alveshttp://lattes.cnpq.br/9401226269919114da Silva, Ana Maria Marqueshttp://lattes.cnpq.br/5375482124482980Ferreira, Júlio Césarhttp://lattes.cnpq.br/8909334567319212Sousa, Pedro Moises de2022-08-08T17:58:16Z2022-08-08T17:58:16Z2022-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUSA, Pedro Moises de. Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet. 2022. 173 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.433.https://repositorio.ufu.br/handle/123456789/35410http://doi.org/10.14393/ufu.te.2022.433porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-05T17:44:21Zoai:repositorio.ufu.br:123456789/35410Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-05T17:44:21Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet Radiological image classification strategies using convolutional neural networks and Wavelet transform |
title |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet |
spellingShingle |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet Sousa, Pedro Moises de radiografias de tórax imagens de CT redes neurais convolucionais COVID- 19 wavelets WCNN chest X-ray CT scans images convolutional neural networks CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Engenharia elétrica Tórax - Radiografia Redes neurais (Computação) Wavelets (Matemática) |
title_short |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet |
title_full |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet |
title_fullStr |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet |
title_full_unstemmed |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet |
title_sort |
Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet |
author |
Sousa, Pedro Moises de |
author_facet |
Sousa, Pedro Moises de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Patrocinio, Ana Claudia http://lattes.cnpq.br/7277318969645668 Andrade, Adriano de Oliveira http://lattes.cnpq.br/1229329519982110 Macedo, Tulio Augusto Alves http://lattes.cnpq.br/9401226269919114 da Silva, Ana Maria Marques http://lattes.cnpq.br/5375482124482980 Ferreira, Júlio César http://lattes.cnpq.br/8909334567319212 |
dc.contributor.author.fl_str_mv |
Sousa, Pedro Moises de |
dc.subject.por.fl_str_mv |
radiografias de tórax imagens de CT redes neurais convolucionais COVID- 19 wavelets WCNN chest X-ray CT scans images convolutional neural networks CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Engenharia elétrica Tórax - Radiografia Redes neurais (Computação) Wavelets (Matemática) |
topic |
radiografias de tórax imagens de CT redes neurais convolucionais COVID- 19 wavelets WCNN chest X-ray CT scans images convolutional neural networks CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Engenharia elétrica Tórax - Radiografia Redes neurais (Computação) Wavelets (Matemática) |
description |
The outbreak of the COVID-19 pandemic has motivated massive worldwide efforts to tackle the problem, such as the simplification of protocols for accessing data repositories and metadata of the new virus and the disease. Searches for research suggest in several areas from biochemical, biological research, serological investigation to genetic engineering and information technology. In the artificial intelligence filed, deep learning techniques were used in search of support tools that would contribute to facing the pandemic. The possibility of reducing errors in the analysis of chest radiological images was a goal of such research, as they complemented the medical examination of the disease. Thus, the pandemic was the first motivation for the creation of the WCNN model and the second motivation was the observation of the use of techniques for resizing medical images to adapt to ready-made models in the literature, which can cause distortions or loss of information in the detection. of the dis-ease under study. WCNN was based on a Convolutional Neural Network (CNN) and wavelet transform. The model proposes a custom input layer, called Wave Layer, which processes the images without resizing them. To assess WCNN, an experiment was performed that exemplifies its behavior, using a set of chest CT images from patients diagnosed with COVID-19 and other lung infections. The result of the metrics Accuracy (ACC), Sensitivity (Sen) and Specificity (Sp) were 0.9819, 0.9783 and 0.98, respectively. Hence, it can be concluded that these expressive results indicate that the association of CNNs and wavelet transforms is promising for the creation of classification models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-08T17:58:16Z 2022-08-08T17:58:16Z 2022-07-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SOUSA, Pedro Moises de. Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet. 2022. 173 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.433. https://repositorio.ufu.br/handle/123456789/35410 http://doi.org/10.14393/ufu.te.2022.433 |
identifier_str_mv |
SOUSA, Pedro Moises de. Estratégias de classificação de imagens radiológicas utilizando redes neurais convolucionais e transformada Wavelet. 2022. 173 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.433. |
url |
https://repositorio.ufu.br/handle/123456789/35410 http://doi.org/10.14393/ufu.te.2022.433 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Elétrica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711290573520896 |