Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/35737 |
Resumo: | COVID-19 is an infectious disease that became a pandemic in 2020 and one of the methods used to aid in the prognosis were imaging tests, such as chest radiography. One of the major problems of this exam is the difficulty of interpretation, aggravated by the fact that it is a disease still little known and that presents symptoms similar to other pathologies. Considering this, this study aimed to analyze the mean, standard deviation, kurtosis, and skewness and the main Haralick texture features of radiographic images of patients with COVID-19 and of exams reported with different pulmonary diseases and with no radiological finding, in order to contribute to the general characterization of chest radiography exams of this disease and to investigate variables that effectively help in the identification of SARS-CoV-2. As a result of this work, it was possible to notice that COVID-19 exams have statistical and texture features considerably different from those of other pulmonary anomalies, a pattern of local uniformity and homogeneity was observed in chest radiography exams of patients diagnosed with COVID-19, which can be identified by analyzing the highest values of Angular Second Moment, Correlation and Inverse Difference Moment, simultaneously with the lowest values of Contrast and Entropy of Haralick features of these images. In addition, in the COVID-19 exams, a pattern of density and dispersion of pixels was identified, demonstrated by the discrepant higher values of mean and standard deviation. Thus, these variables can be studied with the aim of being used for medical assistance when there is uncertainty in the prognosis during the examination visualization. |
id |
UFU_93659f4c7af74a5710222d3f7632417f |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/35737 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de texturaPulmonary radiographic image analysis using statistical and texture featuresExtração de atributosRadiografiaCOVID-19Descritores de texturaFeature extractionRadiographyTexture featuresCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOSCOVID-19 is an infectious disease that became a pandemic in 2020 and one of the methods used to aid in the prognosis were imaging tests, such as chest radiography. One of the major problems of this exam is the difficulty of interpretation, aggravated by the fact that it is a disease still little known and that presents symptoms similar to other pathologies. Considering this, this study aimed to analyze the mean, standard deviation, kurtosis, and skewness and the main Haralick texture features of radiographic images of patients with COVID-19 and of exams reported with different pulmonary diseases and with no radiological finding, in order to contribute to the general characterization of chest radiography exams of this disease and to investigate variables that effectively help in the identification of SARS-CoV-2. As a result of this work, it was possible to notice that COVID-19 exams have statistical and texture features considerably different from those of other pulmonary anomalies, a pattern of local uniformity and homogeneity was observed in chest radiography exams of patients diagnosed with COVID-19, which can be identified by analyzing the highest values of Angular Second Moment, Correlation and Inverse Difference Moment, simultaneously with the lowest values of Contrast and Entropy of Haralick features of these images. In addition, in the COVID-19 exams, a pattern of density and dispersion of pixels was identified, demonstrated by the discrepant higher values of mean and standard deviation. Thus, these variables can be studied with the aim of being used for medical assistance when there is uncertainty in the prognosis during the examination visualization.Pesquisa sem auxílio de agências de fomentoTrabalho de Conclusão de Curso (Graduação)A COVID-19 é uma doença infectocontagiosa que se tornou uma pandemia em 2020 e um dos métodos utilizados para auxílio ao prognóstico foram os exames de imagem, à exemplo da radiografia de tórax. Um dos grandes problemas desse exame é a dificuldade de interpretação, agravado pelo fato de se tratar de uma doença ainda pouco conhecida e que apresenta sintomas parecidos com de outras patologias. Considerando isso, esse trabalho se propôs a analisar a média, desvio padrão, curtose, e assimetria e os principais descritores de textura de Haralick de imagens radiográficas de pacientes com COVID-19 e de exames laudados com diferentes doenças pulmonares e sem achado radiológico, a fim de contribuir com a caracterização geral de exames de radiografia de tórax da doença e investigar variáveis que auxiliem efetivamente na identificação do SARS-CoV-2. Como resultado desse trabalho foi possível perceber que os exames nos quais há presença da COVID-19 possuem características estatísticas e de textura consideravelmente diferentes das outras anomalias pulmonares, foi observado um padrão maior de uniformidade e homogeneidade locais em exames de radiografia de tórax de pacientes diagnosticados com COVID-19, o que pode ser identificado ao analisar os maiores valores de Segundo Momento Angular, Correlação e Momento de Diferença Inverso, simultaneamente com os menores valores de Contraste e Entropia dos atributos de textura de Haralick dessas imagens. Além disso, nos exames de COVID-19 foi identificado maior padrão de densidade e dispersão dos pixels demonstrado pelos discrepantes maiores valores de média e desvio padrão. Com isso, essas variáveis podem ser estudadas com o objetivo de serem utilizadas para o auxílio médico quando há incerteza do prognóstico durante a visualização do exame.Universidade Federal de UberlândiaBrasilEngenharia BiomédicaPatrocinio, Ana Claudiahttp://lattes.cnpq.br/7277318969645668Carneiro, Pedrohttp://lattes.cnpq.br/669987005409560Sousa, Pedrohttp://lattes.cnpq.br/6105352030703632Lima, Manuela Rodrigues de Sousa e2022-08-23T20:22:13Z2022-08-23T20:22:13Z2022-08-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfLIMA, Manuela Rodrigues de Sousa e. Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura. 2022. 28 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2022.https://repositorio.ufu.br/handle/123456789/35737porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-12-20T17:39:58Zoai:repositorio.ufu.br:123456789/35737Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-12-20T17:39:58Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura Pulmonary radiographic image analysis using statistical and texture features |
title |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura |
spellingShingle |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura Lima, Manuela Rodrigues de Sousa e Extração de atributos Radiografia COVID-19 Descritores de textura Feature extraction Radiography Texture features CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS |
title_short |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura |
title_full |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura |
title_fullStr |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura |
title_full_unstemmed |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura |
title_sort |
Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura |
author |
Lima, Manuela Rodrigues de Sousa e |
author_facet |
Lima, Manuela Rodrigues de Sousa e |
author_role |
author |
dc.contributor.none.fl_str_mv |
Patrocinio, Ana Claudia http://lattes.cnpq.br/7277318969645668 Carneiro, Pedro http://lattes.cnpq.br/669987005409560 Sousa, Pedro http://lattes.cnpq.br/6105352030703632 |
dc.contributor.author.fl_str_mv |
Lima, Manuela Rodrigues de Sousa e |
dc.subject.por.fl_str_mv |
Extração de atributos Radiografia COVID-19 Descritores de textura Feature extraction Radiography Texture features CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS |
topic |
Extração de atributos Radiografia COVID-19 Descritores de textura Feature extraction Radiography Texture features CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS |
description |
COVID-19 is an infectious disease that became a pandemic in 2020 and one of the methods used to aid in the prognosis were imaging tests, such as chest radiography. One of the major problems of this exam is the difficulty of interpretation, aggravated by the fact that it is a disease still little known and that presents symptoms similar to other pathologies. Considering this, this study aimed to analyze the mean, standard deviation, kurtosis, and skewness and the main Haralick texture features of radiographic images of patients with COVID-19 and of exams reported with different pulmonary diseases and with no radiological finding, in order to contribute to the general characterization of chest radiography exams of this disease and to investigate variables that effectively help in the identification of SARS-CoV-2. As a result of this work, it was possible to notice that COVID-19 exams have statistical and texture features considerably different from those of other pulmonary anomalies, a pattern of local uniformity and homogeneity was observed in chest radiography exams of patients diagnosed with COVID-19, which can be identified by analyzing the highest values of Angular Second Moment, Correlation and Inverse Difference Moment, simultaneously with the lowest values of Contrast and Entropy of Haralick features of these images. In addition, in the COVID-19 exams, a pattern of density and dispersion of pixels was identified, demonstrated by the discrepant higher values of mean and standard deviation. Thus, these variables can be studied with the aim of being used for medical assistance when there is uncertainty in the prognosis during the examination visualization. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-23T20:22:13Z 2022-08-23T20:22:13Z 2022-08-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LIMA, Manuela Rodrigues de Sousa e. Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura. 2022. 28 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2022. https://repositorio.ufu.br/handle/123456789/35737 |
identifier_str_mv |
LIMA, Manuela Rodrigues de Sousa e. Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura. 2022. 28 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2022. |
url |
https://repositorio.ufu.br/handle/123456789/35737 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Engenharia Biomédica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Engenharia Biomédica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711354196918272 |