Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura

Detalhes bibliográficos
Autor(a) principal: Lima, Manuela Rodrigues de Sousa e
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/35737
Resumo: COVID-19 is an infectious disease that became a pandemic in 2020 and one of the methods used to aid in the prognosis were imaging tests, such as chest radiography. One of the major problems of this exam is the difficulty of interpretation, aggravated by the fact that it is a disease still little known and that presents symptoms similar to other pathologies. Considering this, this study aimed to analyze the mean, standard deviation, kurtosis, and skewness and the main Haralick texture features of radiographic images of patients with COVID-19 and of exams reported with different pulmonary diseases and with no radiological finding, in order to contribute to the general characterization of chest radiography exams of this disease and to investigate variables that effectively help in the identification of SARS-CoV-2. As a result of this work, it was possible to notice that COVID-19 exams have statistical and texture features considerably different from those of other pulmonary anomalies, a pattern of local uniformity and homogeneity was observed in chest radiography exams of patients diagnosed with COVID-19, which can be identified by analyzing the highest values of Angular Second Moment, Correlation and Inverse Difference Moment, simultaneously with the lowest values of Contrast and Entropy of Haralick features of these images. In addition, in the COVID-19 exams, a pattern of density and dispersion of pixels was identified, demonstrated by the discrepant higher values of mean and standard deviation. Thus, these variables can be studied with the aim of being used for medical assistance when there is uncertainty in the prognosis during the examination visualization.
id UFU_93659f4c7af74a5710222d3f7632417f
oai_identifier_str oai:repositorio.ufu.br:123456789/35737
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Análise de imagens radiográficas pulmonares usando atributos estatísticos e de texturaPulmonary radiographic image analysis using statistical and texture featuresExtração de atributosRadiografiaCOVID-19Descritores de texturaFeature extractionRadiographyTexture featuresCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOSCOVID-19 is an infectious disease that became a pandemic in 2020 and one of the methods used to aid in the prognosis were imaging tests, such as chest radiography. One of the major problems of this exam is the difficulty of interpretation, aggravated by the fact that it is a disease still little known and that presents symptoms similar to other pathologies. Considering this, this study aimed to analyze the mean, standard deviation, kurtosis, and skewness and the main Haralick texture features of radiographic images of patients with COVID-19 and of exams reported with different pulmonary diseases and with no radiological finding, in order to contribute to the general characterization of chest radiography exams of this disease and to investigate variables that effectively help in the identification of SARS-CoV-2. As a result of this work, it was possible to notice that COVID-19 exams have statistical and texture features considerably different from those of other pulmonary anomalies, a pattern of local uniformity and homogeneity was observed in chest radiography exams of patients diagnosed with COVID-19, which can be identified by analyzing the highest values of Angular Second Moment, Correlation and Inverse Difference Moment, simultaneously with the lowest values of Contrast and Entropy of Haralick features of these images. In addition, in the COVID-19 exams, a pattern of density and dispersion of pixels was identified, demonstrated by the discrepant higher values of mean and standard deviation. Thus, these variables can be studied with the aim of being used for medical assistance when there is uncertainty in the prognosis during the examination visualization.Pesquisa sem auxílio de agências de fomentoTrabalho de Conclusão de Curso (Graduação)A COVID-19 é uma doença infectocontagiosa que se tornou uma pandemia em 2020 e um dos métodos utilizados para auxílio ao prognóstico foram os exames de imagem, à exemplo da radiografia de tórax. Um dos grandes problemas desse exame é a dificuldade de interpretação, agravado pelo fato de se tratar de uma doença ainda pouco conhecida e que apresenta sintomas parecidos com de outras patologias. Considerando isso, esse trabalho se propôs a analisar a média, desvio padrão, curtose, e assimetria e os principais descritores de textura de Haralick de imagens radiográficas de pacientes com COVID-19 e de exames laudados com diferentes doenças pulmonares e sem achado radiológico, a fim de contribuir com a caracterização geral de exames de radiografia de tórax da doença e investigar variáveis que auxiliem efetivamente na identificação do SARS-CoV-2. Como resultado desse trabalho foi possível perceber que os exames nos quais há presença da COVID-19 possuem características estatísticas e de textura consideravelmente diferentes das outras anomalias pulmonares, foi observado um padrão maior de uniformidade e homogeneidade locais em exames de radiografia de tórax de pacientes diagnosticados com COVID-19, o que pode ser identificado ao analisar os maiores valores de Segundo Momento Angular, Correlação e Momento de Diferença Inverso, simultaneamente com os menores valores de Contraste e Entropia dos atributos de textura de Haralick dessas imagens. Além disso, nos exames de COVID-19 foi identificado maior padrão de densidade e dispersão dos pixels demonstrado pelos discrepantes maiores valores de média e desvio padrão. Com isso, essas variáveis podem ser estudadas com o objetivo de serem utilizadas para o auxílio médico quando há incerteza do prognóstico durante a visualização do exame.Universidade Federal de UberlândiaBrasilEngenharia BiomédicaPatrocinio, Ana Claudiahttp://lattes.cnpq.br/7277318969645668Carneiro, Pedrohttp://lattes.cnpq.br/669987005409560Sousa, Pedrohttp://lattes.cnpq.br/6105352030703632Lima, Manuela Rodrigues de Sousa e2022-08-23T20:22:13Z2022-08-23T20:22:13Z2022-08-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfLIMA, Manuela Rodrigues de Sousa e. Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura. 2022. 28 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2022.https://repositorio.ufu.br/handle/123456789/35737porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-12-20T17:39:58Zoai:repositorio.ufu.br:123456789/35737Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-12-20T17:39:58Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
Pulmonary radiographic image analysis using statistical and texture features
title Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
spellingShingle Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
Lima, Manuela Rodrigues de Sousa e
Extração de atributos
Radiografia
COVID-19
Descritores de textura
Feature extraction
Radiography
Texture features
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
title_short Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
title_full Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
title_fullStr Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
title_full_unstemmed Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
title_sort Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura
author Lima, Manuela Rodrigues de Sousa e
author_facet Lima, Manuela Rodrigues de Sousa e
author_role author
dc.contributor.none.fl_str_mv Patrocinio, Ana Claudia
http://lattes.cnpq.br/7277318969645668
Carneiro, Pedro
http://lattes.cnpq.br/669987005409560
Sousa, Pedro
http://lattes.cnpq.br/6105352030703632
dc.contributor.author.fl_str_mv Lima, Manuela Rodrigues de Sousa e
dc.subject.por.fl_str_mv Extração de atributos
Radiografia
COVID-19
Descritores de textura
Feature extraction
Radiography
Texture features
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
topic Extração de atributos
Radiografia
COVID-19
Descritores de textura
Feature extraction
Radiography
Texture features
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
description COVID-19 is an infectious disease that became a pandemic in 2020 and one of the methods used to aid in the prognosis were imaging tests, such as chest radiography. One of the major problems of this exam is the difficulty of interpretation, aggravated by the fact that it is a disease still little known and that presents symptoms similar to other pathologies. Considering this, this study aimed to analyze the mean, standard deviation, kurtosis, and skewness and the main Haralick texture features of radiographic images of patients with COVID-19 and of exams reported with different pulmonary diseases and with no radiological finding, in order to contribute to the general characterization of chest radiography exams of this disease and to investigate variables that effectively help in the identification of SARS-CoV-2. As a result of this work, it was possible to notice that COVID-19 exams have statistical and texture features considerably different from those of other pulmonary anomalies, a pattern of local uniformity and homogeneity was observed in chest radiography exams of patients diagnosed with COVID-19, which can be identified by analyzing the highest values of Angular Second Moment, Correlation and Inverse Difference Moment, simultaneously with the lowest values of Contrast and Entropy of Haralick features of these images. In addition, in the COVID-19 exams, a pattern of density and dispersion of pixels was identified, demonstrated by the discrepant higher values of mean and standard deviation. Thus, these variables can be studied with the aim of being used for medical assistance when there is uncertainty in the prognosis during the examination visualization.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-23T20:22:13Z
2022-08-23T20:22:13Z
2022-08-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LIMA, Manuela Rodrigues de Sousa e. Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura. 2022. 28 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2022.
https://repositorio.ufu.br/handle/123456789/35737
identifier_str_mv LIMA, Manuela Rodrigues de Sousa e. Análise de imagens radiográficas pulmonares usando atributos estatísticos e de textura. 2022. 28 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2022.
url https://repositorio.ufu.br/handle/123456789/35737
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Engenharia Biomédica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Engenharia Biomédica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711354196918272