An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/38912 http://doi.org/10.14393/ufu.te.2023.431 |
Resumo: | This thesis systematically explored the implementation of a Space-Filling strategy for an artificially intelligent trajectory planning to be used in Wire Arc Additive Manufacturing (WAAM) and investigated its benefits and challenges. The Pixel strategy, as the focus, was proposed and developed as an innovative and flexible computerized tool in trajectory planning for complex geometries. Pixel was intended to provide multiple applicable trajectories for part printings and the subsequent optimized trajectory selection for each case. To achieve this target, a basic version was offered using a space-filling approach, by formulating a grid of nodes, and, simultaneously, four heuristics for node connections. Computational evaluations demonstrated the effectiveness of the "Basic-Pixel" strategy for various part geometries. Experimental builds using Gas Metal Arc (GMA) and plain carbon steel confirmed the practical viability of this basic version, enabling the deposition and construction of intricate shapes, including polygonal nonconvex geometries with holes. To boost the algorithm's performance, the "Enhanced-Pixel" strategy was introduced, incorporating a new node sorting method and four trajectory planning heuristics. Comparative analyses in specific case studies validated the operational efficiency and effectiveness of the "enhanced" version compared to commercially applied conventional strategies. The study further explored the following "Advanced-Pixel" strategy, utilizing reinforcement learning techniques (artificial intelligence) to optimize the selection of trajectory planning heuristics and ordering methods. Experimental analyses revealed that the "Advanced-Pixel" strategy outperforms the "Enhanced-Pixel" strategy in terms of performance gains and response quality, demonstrating reduced printing time and trajectory distance, particularly for larger components. Additionally, the thesis work investigated the "Fast-Pixel" strategy, leveraging clustering techniques with "k-means" to reduce the dimensionality of the optimization problem. The "Fast-Pixel" strategy implementation demonstrated improved performance across all tested parts, significantly reducing computational time while improving response quality. At last, the thesis text outlines future research directions, including expanding to different materials, optimizing computational efficiency, mitigating non- conformities, exploring hybrid strategies, and developing real-time monitoring and quality control systems. In conclusion, the research and development work in this thesis, by introducing the Pixel strategy and its improvements, provided an option for trajectory planning in WAAM. The experimental validations, computational evaluations, and practical demonstrations highlighted the effectiveness and viability of the proposed strategies. These scientific-oriented developments have significant implications for the efficient and effective production of complex parts using additive manufacturing technologies, paving the way for further advancements in the field. |
id |
UFU_fdebe7a689a4507ece03e6db592469bc |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/38912 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturingUm planejamento artificialmente inteligente de trajetórias por preenchimento de espaços para manufatura aditiva por deposição a arco (MADA)Wire Arc Additive Manufacturing (WAAM)Manufatura Aditiva por Deposição a Arco (MADA)Trajectory planningPlanejamento de trajetóriaSpace-Filling strategyEstratégia de Preenchimento de EspaçoTravelling Salesman ProblemProblema do Caixeiro ViajanteOperational efficiency and effectivenessEficiência e efetividade operacionalReinforcement learningAprendizado por reforçoMulti-Armed BanditBandido Multi-armadoClusteringAgrupamentoK-meansK-meansCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROCESSOS DE FABRICACAO::ROBOTIZACAOEngenharia mecânicaPlanejamento dos recursos de manufaturaInteligência artificialAnálise dimensionalThis thesis systematically explored the implementation of a Space-Filling strategy for an artificially intelligent trajectory planning to be used in Wire Arc Additive Manufacturing (WAAM) and investigated its benefits and challenges. The Pixel strategy, as the focus, was proposed and developed as an innovative and flexible computerized tool in trajectory planning for complex geometries. Pixel was intended to provide multiple applicable trajectories for part printings and the subsequent optimized trajectory selection for each case. To achieve this target, a basic version was offered using a space-filling approach, by formulating a grid of nodes, and, simultaneously, four heuristics for node connections. Computational evaluations demonstrated the effectiveness of the "Basic-Pixel" strategy for various part geometries. Experimental builds using Gas Metal Arc (GMA) and plain carbon steel confirmed the practical viability of this basic version, enabling the deposition and construction of intricate shapes, including polygonal nonconvex geometries with holes. To boost the algorithm's performance, the "Enhanced-Pixel" strategy was introduced, incorporating a new node sorting method and four trajectory planning heuristics. Comparative analyses in specific case studies validated the operational efficiency and effectiveness of the "enhanced" version compared to commercially applied conventional strategies. The study further explored the following "Advanced-Pixel" strategy, utilizing reinforcement learning techniques (artificial intelligence) to optimize the selection of trajectory planning heuristics and ordering methods. Experimental analyses revealed that the "Advanced-Pixel" strategy outperforms the "Enhanced-Pixel" strategy in terms of performance gains and response quality, demonstrating reduced printing time and trajectory distance, particularly for larger components. Additionally, the thesis work investigated the "Fast-Pixel" strategy, leveraging clustering techniques with "k-means" to reduce the dimensionality of the optimization problem. The "Fast-Pixel" strategy implementation demonstrated improved performance across all tested parts, significantly reducing computational time while improving response quality. At last, the thesis text outlines future research directions, including expanding to different materials, optimizing computational efficiency, mitigating non- conformities, exploring hybrid strategies, and developing real-time monitoring and quality control systems. In conclusion, the research and development work in this thesis, by introducing the Pixel strategy and its improvements, provided an option for trajectory planning in WAAM. The experimental validations, computational evaluations, and practical demonstrations highlighted the effectiveness and viability of the proposed strategies. These scientific-oriented developments have significant implications for the efficient and effective production of complex parts using additive manufacturing technologies, paving the way for further advancements in the field.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)Esta tese explorou sistematicamente a implementação de uma estratégia de preenchimento de espaço para um planejamento de trajetória artificialmente inteligente para ser usado em na Manufatura Aditiva por Deposição a Arco (MADA) e investigou seus benefícios e desafios. A estratégia Pixel, como foco, foi proposta e desenvolvida como uma ferramenta informatizada inovadora e flexível no planejamento de trajetórias para geometrias complexas. O Pixel foi projetado para fornecer múltiplas trajetórias aplicáveis para impressões de peças e a subseqüente seleção de trajetória otimizada para cada caso. Para atingir esse objetivo, uma versão básica foi oferecida usando uma abordagem de preenchimento de espaço, formulando uma grade de nós e, simultaneamente, quatro heurísticas para conexões de nós. Avaliações computacionais demonstraram a eficácia da estratégia "Basic-Pixel" para várias geometrias de peças. Construções experimentais usando Gas Metal Arc (GMA) e aço comum ao carbono confirmaram a viabilidade prática desta versão básica, permitindo a deposição e construção de formas intrincadas, incluindo geometrias poligonais não convexas com furos. Para aumentar o desempenho do algoritmo, a estratégia "Enhanced-Pixel" foi introduzida, incorporando um novo método de classificação de nós e quatro heurísticas de planejamento de trajetória. Análises comparativas em estudos de caso específicos validaram a eficiência operacional e eficácia da versão "aprimorada" em comparação com estratégias convencionais aplicadas comercialmente. O estudo explorou ainda mais a seguinte a estratégia "Advanced-Pixel", utilizando técnicas de aprendizado por reforço (inteligência artificial) para otimizar a seleção de heurísticas de planejamento de trajetória e métodos de ordenação. Análises experimentais revelaram que a estratégia "Advanced-Pixel" supera a estratégia "Enhanced-Pixel" em termos de ganhos de desempenho e qualidade de resposta, demonstrando tempo de impressão e distância de trajetória reduzidos, principalmente para componentes maiores. Adicionalmente, o trabalho de tese investigou a estratégia "Fast-Pixel", aproveitando técnicas de agrupamento com "k-means" para reduzir a dimensionalidade do problema de otimização. A implementação da estratégia "Fast-Pixel" demonstrou desempenho aprimorado em todas as peças testadas, reduzindo significativamente o tempo computacional e melhorando a qualidade da resposta. Por fim, o texto da tese delineia direções futuras de pesquisa, incluindo a expansão para diferentes materiais, otimização da eficiência computacional, mitigação de não conformidades, exploração de estratégias híbridas e desenvolvimento de sistemas de monitoramento e controle de qualidade em tempo real. Em conclusão, o trabalho de pesquisa e desenvolvimento desta tese, ao apresentar a estratégia Pixel e suas melhorias, forneceu uma opção de planejamento de trajetória para MADA. As validações experimentais, avaliações computacionais e demonstrações práticas evidenciaram a eficácia e viabilidade das estratégias propostas. Esses desenvolvimentos de orientação científica têm implicações significativas para a produção eficiente e eficaz de peças complexas usando tecnologias de manufatura aditiva, abrindo caminho para novos avanços no campo.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia MecânicaScotti, Américohttp://lattes.cnpq.br/5719116057125057Duarte, Marcus Antônio Vianahttp://lattes.cnpq.br/9030389274220180Fiocchi, Arthur Alveshttp://lattes.cnpq.br/3822377177295931Minetto, Rodrigohttp://lattes.cnpq.br/8366112479020867Ferreira, Rafael Pereira2023-08-17T11:40:08Z2023-08-17T11:40:08Z2023-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFERREIRA, Rafael Pereira. An Artificially Intelligent Space-Filling Trajectory Planning for Wire Arc Additive Manufacturing. 2023. 159 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.431.https://repositorio.ufu.br/handle/123456789/38912http://doi.org/10.14393/ufu.te.2023.431enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-08-18T06:25:22Zoai:repositorio.ufu.br:123456789/38912Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-08-18T06:25:22Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing Um planejamento artificialmente inteligente de trajetórias por preenchimento de espaços para manufatura aditiva por deposição a arco (MADA) |
title |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing |
spellingShingle |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing Ferreira, Rafael Pereira Wire Arc Additive Manufacturing (WAAM) Manufatura Aditiva por Deposição a Arco (MADA) Trajectory planning Planejamento de trajetória Space-Filling strategy Estratégia de Preenchimento de Espaço Travelling Salesman Problem Problema do Caixeiro Viajante Operational efficiency and effectiveness Eficiência e efetividade operacional Reinforcement learning Aprendizado por reforço Multi-Armed Bandit Bandido Multi-armado Clustering Agrupamento K-means K-means CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROCESSOS DE FABRICACAO::ROBOTIZACAO Engenharia mecânica Planejamento dos recursos de manufatura Inteligência artificial Análise dimensional |
title_short |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing |
title_full |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing |
title_fullStr |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing |
title_full_unstemmed |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing |
title_sort |
An artificially intelligent space-filling trajectory planning for wire arc additive manufacturing |
author |
Ferreira, Rafael Pereira |
author_facet |
Ferreira, Rafael Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Scotti, Américo http://lattes.cnpq.br/5719116057125057 Duarte, Marcus Antônio Viana http://lattes.cnpq.br/9030389274220180 Fiocchi, Arthur Alves http://lattes.cnpq.br/3822377177295931 Minetto, Rodrigo http://lattes.cnpq.br/8366112479020867 |
dc.contributor.author.fl_str_mv |
Ferreira, Rafael Pereira |
dc.subject.por.fl_str_mv |
Wire Arc Additive Manufacturing (WAAM) Manufatura Aditiva por Deposição a Arco (MADA) Trajectory planning Planejamento de trajetória Space-Filling strategy Estratégia de Preenchimento de Espaço Travelling Salesman Problem Problema do Caixeiro Viajante Operational efficiency and effectiveness Eficiência e efetividade operacional Reinforcement learning Aprendizado por reforço Multi-Armed Bandit Bandido Multi-armado Clustering Agrupamento K-means K-means CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROCESSOS DE FABRICACAO::ROBOTIZACAO Engenharia mecânica Planejamento dos recursos de manufatura Inteligência artificial Análise dimensional |
topic |
Wire Arc Additive Manufacturing (WAAM) Manufatura Aditiva por Deposição a Arco (MADA) Trajectory planning Planejamento de trajetória Space-Filling strategy Estratégia de Preenchimento de Espaço Travelling Salesman Problem Problema do Caixeiro Viajante Operational efficiency and effectiveness Eficiência e efetividade operacional Reinforcement learning Aprendizado por reforço Multi-Armed Bandit Bandido Multi-armado Clustering Agrupamento K-means K-means CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROCESSOS DE FABRICACAO::ROBOTIZACAO Engenharia mecânica Planejamento dos recursos de manufatura Inteligência artificial Análise dimensional |
description |
This thesis systematically explored the implementation of a Space-Filling strategy for an artificially intelligent trajectory planning to be used in Wire Arc Additive Manufacturing (WAAM) and investigated its benefits and challenges. The Pixel strategy, as the focus, was proposed and developed as an innovative and flexible computerized tool in trajectory planning for complex geometries. Pixel was intended to provide multiple applicable trajectories for part printings and the subsequent optimized trajectory selection for each case. To achieve this target, a basic version was offered using a space-filling approach, by formulating a grid of nodes, and, simultaneously, four heuristics for node connections. Computational evaluations demonstrated the effectiveness of the "Basic-Pixel" strategy for various part geometries. Experimental builds using Gas Metal Arc (GMA) and plain carbon steel confirmed the practical viability of this basic version, enabling the deposition and construction of intricate shapes, including polygonal nonconvex geometries with holes. To boost the algorithm's performance, the "Enhanced-Pixel" strategy was introduced, incorporating a new node sorting method and four trajectory planning heuristics. Comparative analyses in specific case studies validated the operational efficiency and effectiveness of the "enhanced" version compared to commercially applied conventional strategies. The study further explored the following "Advanced-Pixel" strategy, utilizing reinforcement learning techniques (artificial intelligence) to optimize the selection of trajectory planning heuristics and ordering methods. Experimental analyses revealed that the "Advanced-Pixel" strategy outperforms the "Enhanced-Pixel" strategy in terms of performance gains and response quality, demonstrating reduced printing time and trajectory distance, particularly for larger components. Additionally, the thesis work investigated the "Fast-Pixel" strategy, leveraging clustering techniques with "k-means" to reduce the dimensionality of the optimization problem. The "Fast-Pixel" strategy implementation demonstrated improved performance across all tested parts, significantly reducing computational time while improving response quality. At last, the thesis text outlines future research directions, including expanding to different materials, optimizing computational efficiency, mitigating non- conformities, exploring hybrid strategies, and developing real-time monitoring and quality control systems. In conclusion, the research and development work in this thesis, by introducing the Pixel strategy and its improvements, provided an option for trajectory planning in WAAM. The experimental validations, computational evaluations, and practical demonstrations highlighted the effectiveness and viability of the proposed strategies. These scientific-oriented developments have significant implications for the efficient and effective production of complex parts using additive manufacturing technologies, paving the way for further advancements in the field. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-17T11:40:08Z 2023-08-17T11:40:08Z 2023-08-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERREIRA, Rafael Pereira. An Artificially Intelligent Space-Filling Trajectory Planning for Wire Arc Additive Manufacturing. 2023. 159 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.431. https://repositorio.ufu.br/handle/123456789/38912 http://doi.org/10.14393/ufu.te.2023.431 |
identifier_str_mv |
FERREIRA, Rafael Pereira. An Artificially Intelligent Space-Filling Trajectory Planning for Wire Arc Additive Manufacturing. 2023. 159 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.431. |
url |
https://repositorio.ufu.br/handle/123456789/38912 http://doi.org/10.14393/ufu.te.2023.431 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Mecânica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Mecânica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711501557497856 |