Data mining in tweets for analyzing dairy consumption in Brazil

Detalhes bibliográficos
Autor(a) principal: Nogueira, Thallys da Silva
Data de Publicação: 2022
Outros Autores: Monteiro, Anna Letícia Franco, Silva, Darlan Henrique da Costa, Siqueira, Kennya Beatriz, Goliatt, Priscila Vanessa Zabala Capriles
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia Química e Química
Texto Completo: https://periodicos.ufv.br/jcec/article/view/14863
Resumo: Brazilians' daily routine was affected by the COVID-19 epidemic in a number of ways, with food being one of them. This study used data from the social network Twitter and the tool Observatório do Consumidor to examine the consumption of dairy products in Brazil in recent years. Natural language processing techniques were applied to the data to determine the verbs relating to consumption and their respective frequencies over time in order to respond to the queries "Which are the most consumed dairy products in Brazil?" and "How was this consumption over time?". It was found that the five dairy products with the largest number of consumption-related verb references were ice cream, condensed milk, cheese, dulce de leche, and milk, making them the most popular choices during the study period. However, it was noted that since 2020, dairy consumption has been declining. These findings demonstrate that it is feasible to swiftly, dynamically, and affordably assess food consumption through social networks.
id UFV-4_1ed6d40975b3c062221eac9d309dc5d6
oai_identifier_str oai:ojs.periodicos.ufv.br:article/14863
network_acronym_str UFV-4
network_name_str Revista de Engenharia Química e Química
repository_id_str
spelling Data mining in tweets for analyzing dairy consumption in BrazilMineração de dados em tweets para análise do consumo de lácteos no BrasilConsumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado.Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research.Brazilians' daily routine was affected by the COVID-19 epidemic in a number of ways, with food being one of them. This study used data from the social network Twitter and the tool Observatório do Consumidor to examine the consumption of dairy products in Brazil in recent years. Natural language processing techniques were applied to the data to determine the verbs relating to consumption and their respective frequencies over time in order to respond to the queries "Which are the most consumed dairy products in Brazil?" and "How was this consumption over time?". It was found that the five dairy products with the largest number of consumption-related verb references were ice cream, condensed milk, cheese, dulce de leche, and milk, making them the most popular choices during the study period. However, it was noted that since 2020, dairy consumption has been declining. These findings demonstrate that it is feasible to swiftly, dynamically, and affordably assess food consumption through social networks.A pandemia da COVID-19 causou diversos impactos na rotina dos brasileiros e a alimentação é um deles. O foco deste trabalho foi analisar o consumo de produtos lácteos no Brasil nos últimos tempos, empregando dados da rede social Twitter, com a ferramenta Observatório do Consumidor. Com o objetivo de responder às perguntas “Quais são os derivados lácteos mais consumidos no Brasil?” e “Como foi este consumo ao longo do tempo?”, utilizou-se técnicas de processamento de linguagem natural nos dados para identificar os verbos referentes ao consumo e suas respectivas frequências ao longo do tempo. Foi observado que sorvete, leite condensado, queijos, doce de leite e leite foram os cinco produtos lácteos que obtiveram maior número de menções a verbos que remetem ao consumo, caracterizando-os como os produtos mais consumidos no período analisado. Entretanto, foi observado que o consumo de lácteos vem diminuindo desde 2020. Estes resultados mostram que é possível analisar de forma rápida, dinâmica e barata, o consumo de alimentos por meio das redes sociais. Universidade Federal de Viçosa - UFV2022-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1486310.18540/jcecvl8iss10pp14863-01aThe Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14863-01aThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14863-01aThe Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14863-01a2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVporhttps://periodicos.ufv.br/jcec/article/view/14863/7674Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessNogueira, Thallys da SilvaMonteiro, Anna Letícia FrancoSilva, Darlan Henrique da CostaSiqueira, Kennya BeatrizGoliatt, Priscila Vanessa Zabala Capriles2022-12-21T14:46:10Zoai:ojs.periodicos.ufv.br:article/14863Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2022-12-21T14:46:10Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Data mining in tweets for analyzing dairy consumption in Brazil
Mineração de dados em tweets para análise do consumo de lácteos no Brasil
title Data mining in tweets for analyzing dairy consumption in Brazil
spellingShingle Data mining in tweets for analyzing dairy consumption in Brazil
Nogueira, Thallys da Silva
Consumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado.
Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research.
title_short Data mining in tweets for analyzing dairy consumption in Brazil
title_full Data mining in tweets for analyzing dairy consumption in Brazil
title_fullStr Data mining in tweets for analyzing dairy consumption in Brazil
title_full_unstemmed Data mining in tweets for analyzing dairy consumption in Brazil
title_sort Data mining in tweets for analyzing dairy consumption in Brazil
author Nogueira, Thallys da Silva
author_facet Nogueira, Thallys da Silva
Monteiro, Anna Letícia Franco
Silva, Darlan Henrique da Costa
Siqueira, Kennya Beatriz
Goliatt, Priscila Vanessa Zabala Capriles
author_role author
author2 Monteiro, Anna Letícia Franco
Silva, Darlan Henrique da Costa
Siqueira, Kennya Beatriz
Goliatt, Priscila Vanessa Zabala Capriles
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Nogueira, Thallys da Silva
Monteiro, Anna Letícia Franco
Silva, Darlan Henrique da Costa
Siqueira, Kennya Beatriz
Goliatt, Priscila Vanessa Zabala Capriles
dc.subject.por.fl_str_mv Consumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado.
Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research.
topic Consumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado.
Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research.
description Brazilians' daily routine was affected by the COVID-19 epidemic in a number of ways, with food being one of them. This study used data from the social network Twitter and the tool Observatório do Consumidor to examine the consumption of dairy products in Brazil in recent years. Natural language processing techniques were applied to the data to determine the verbs relating to consumption and their respective frequencies over time in order to respond to the queries "Which are the most consumed dairy products in Brazil?" and "How was this consumption over time?". It was found that the five dairy products with the largest number of consumption-related verb references were ice cream, condensed milk, cheese, dulce de leche, and milk, making them the most popular choices during the study period. However, it was noted that since 2020, dairy consumption has been declining. These findings demonstrate that it is feasible to swiftly, dynamically, and affordably assess food consumption through social networks.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14863
10.18540/jcecvl8iss10pp14863-01a
url https://periodicos.ufv.br/jcec/article/view/14863
identifier_str_mv 10.18540/jcecvl8iss10pp14863-01a
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14863/7674
dc.rights.driver.fl_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14863-01a
The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14863-01a
The Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14863-01a
2527-1075
reponame:Revista de Engenharia Química e Química
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str Revista de Engenharia Química e Química
collection Revista de Engenharia Química e Química
repository.name.fl_str_mv Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv jcec.journal@ufv.br||req2@ufv.br
_version_ 1800211190746447872