Data mining in tweets for analyzing dairy consumption in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia Química e Química |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/14863 |
Resumo: | Brazilians' daily routine was affected by the COVID-19 epidemic in a number of ways, with food being one of them. This study used data from the social network Twitter and the tool Observatório do Consumidor to examine the consumption of dairy products in Brazil in recent years. Natural language processing techniques were applied to the data to determine the verbs relating to consumption and their respective frequencies over time in order to respond to the queries "Which are the most consumed dairy products in Brazil?" and "How was this consumption over time?". It was found that the five dairy products with the largest number of consumption-related verb references were ice cream, condensed milk, cheese, dulce de leche, and milk, making them the most popular choices during the study period. However, it was noted that since 2020, dairy consumption has been declining. These findings demonstrate that it is feasible to swiftly, dynamically, and affordably assess food consumption through social networks. |
id |
UFV-4_1ed6d40975b3c062221eac9d309dc5d6 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/14863 |
network_acronym_str |
UFV-4 |
network_name_str |
Revista de Engenharia Química e Química |
repository_id_str |
|
spelling |
Data mining in tweets for analyzing dairy consumption in BrazilMineração de dados em tweets para análise do consumo de lácteos no BrasilConsumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado.Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research.Brazilians' daily routine was affected by the COVID-19 epidemic in a number of ways, with food being one of them. This study used data from the social network Twitter and the tool Observatório do Consumidor to examine the consumption of dairy products in Brazil in recent years. Natural language processing techniques were applied to the data to determine the verbs relating to consumption and their respective frequencies over time in order to respond to the queries "Which are the most consumed dairy products in Brazil?" and "How was this consumption over time?". It was found that the five dairy products with the largest number of consumption-related verb references were ice cream, condensed milk, cheese, dulce de leche, and milk, making them the most popular choices during the study period. However, it was noted that since 2020, dairy consumption has been declining. These findings demonstrate that it is feasible to swiftly, dynamically, and affordably assess food consumption through social networks.A pandemia da COVID-19 causou diversos impactos na rotina dos brasileiros e a alimentação é um deles. O foco deste trabalho foi analisar o consumo de produtos lácteos no Brasil nos últimos tempos, empregando dados da rede social Twitter, com a ferramenta Observatório do Consumidor. Com o objetivo de responder às perguntas “Quais são os derivados lácteos mais consumidos no Brasil?” e “Como foi este consumo ao longo do tempo?”, utilizou-se técnicas de processamento de linguagem natural nos dados para identificar os verbos referentes ao consumo e suas respectivas frequências ao longo do tempo. Foi observado que sorvete, leite condensado, queijos, doce de leite e leite foram os cinco produtos lácteos que obtiveram maior número de menções a verbos que remetem ao consumo, caracterizando-os como os produtos mais consumidos no período analisado. Entretanto, foi observado que o consumo de lácteos vem diminuindo desde 2020. Estes resultados mostram que é possível analisar de forma rápida, dinâmica e barata, o consumo de alimentos por meio das redes sociais. Universidade Federal de Viçosa - UFV2022-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1486310.18540/jcecvl8iss10pp14863-01aThe Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14863-01aThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14863-01aThe Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14863-01a2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVporhttps://periodicos.ufv.br/jcec/article/view/14863/7674Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessNogueira, Thallys da SilvaMonteiro, Anna Letícia FrancoSilva, Darlan Henrique da CostaSiqueira, Kennya BeatrizGoliatt, Priscila Vanessa Zabala Capriles2022-12-21T14:46:10Zoai:ojs.periodicos.ufv.br:article/14863Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2022-12-21T14:46:10Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Data mining in tweets for analyzing dairy consumption in Brazil Mineração de dados em tweets para análise do consumo de lácteos no Brasil |
title |
Data mining in tweets for analyzing dairy consumption in Brazil |
spellingShingle |
Data mining in tweets for analyzing dairy consumption in Brazil Nogueira, Thallys da Silva Consumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado. Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research. |
title_short |
Data mining in tweets for analyzing dairy consumption in Brazil |
title_full |
Data mining in tweets for analyzing dairy consumption in Brazil |
title_fullStr |
Data mining in tweets for analyzing dairy consumption in Brazil |
title_full_unstemmed |
Data mining in tweets for analyzing dairy consumption in Brazil |
title_sort |
Data mining in tweets for analyzing dairy consumption in Brazil |
author |
Nogueira, Thallys da Silva |
author_facet |
Nogueira, Thallys da Silva Monteiro, Anna Letícia Franco Silva, Darlan Henrique da Costa Siqueira, Kennya Beatriz Goliatt, Priscila Vanessa Zabala Capriles |
author_role |
author |
author2 |
Monteiro, Anna Letícia Franco Silva, Darlan Henrique da Costa Siqueira, Kennya Beatriz Goliatt, Priscila Vanessa Zabala Capriles |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Nogueira, Thallys da Silva Monteiro, Anna Letícia Franco Silva, Darlan Henrique da Costa Siqueira, Kennya Beatriz Goliatt, Priscila Vanessa Zabala Capriles |
dc.subject.por.fl_str_mv |
Consumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado. Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research. |
topic |
Consumidor. Leite e derivados. Inteligência artificial. Redes sociais. Pesquisa de mercado. Consumer. Milk and derivatives. Artificial intelligence. Social networks. Market research. |
description |
Brazilians' daily routine was affected by the COVID-19 epidemic in a number of ways, with food being one of them. This study used data from the social network Twitter and the tool Observatório do Consumidor to examine the consumption of dairy products in Brazil in recent years. Natural language processing techniques were applied to the data to determine the verbs relating to consumption and their respective frequencies over time in order to respond to the queries "Which are the most consumed dairy products in Brazil?" and "How was this consumption over time?". It was found that the five dairy products with the largest number of consumption-related verb references were ice cream, condensed milk, cheese, dulce de leche, and milk, making them the most popular choices during the study period. However, it was noted that since 2020, dairy consumption has been declining. These findings demonstrate that it is feasible to swiftly, dynamically, and affordably assess food consumption through social networks. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/14863 10.18540/jcecvl8iss10pp14863-01a |
url |
https://periodicos.ufv.br/jcec/article/view/14863 |
identifier_str_mv |
10.18540/jcecvl8iss10pp14863-01a |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/14863/7674 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14863-01a The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14863-01a The Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14863-01a 2527-1075 reponame:Revista de Engenharia Química e Química instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
Revista de Engenharia Química e Química |
collection |
Revista de Engenharia Química e Química |
repository.name.fl_str_mv |
Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
jcec.journal@ufv.br||req2@ufv.br |
_version_ |
1800211190746447872 |