Dirac equation solution in the light front via linear algebra and its particularities

Detalhes bibliográficos
Autor(a) principal: Sales, Jorge Henrique de Oliveira
Data de Publicação: 2023
Outros Autores: Aragão, Gabriel de Oliveira, Nascimento, Diego Ramos do, Thibes, Ronaldo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Engenharia Química e Química
Texto Completo: https://periodicos.ufv.br/jcec/article/view/16329
Resumo: In undergraduate and postgraduate courses, it is customary to present the Dirac equation defined in a space of four dimensions: three spatial and one temporal. This article discusses aspects of the Dirac equation (QED) on the light front. This proposal of coordinate transformations comes from Dirac who originally introduced three distinct forms of relativistic dynamics possible depending on the choice we make of the different hypersurfaces constant in time. The first he called instantaneous, the most common form, the hypersurface of which is specified by the boundary conditions set at  . The second, known as the point form, has as its characterizing surface, a hyperboloid, described by the initial conditions in , being  one constant (chosen as the time of this system). The third relativistic form, known as the light front form, has its hypersurface tangent to the light cone; being defined by the initial conditions at , and  is the time in the light front system. The method of this work is deductive. Therefore, one obtains the solution of the Dirac equation for the Free Electron and for the positron in the coordinates in the light front with the particularity of the energy associated with the system being given by , and for moments  we have the electron and  we have the positron. The result of this is that the positive energy states in the light front  and negative   are independently described in the equation, and with additional, the problem at the limit that does not converge. 
id UFV-4_2acade2d6d88ef815d7829f2a8ac2241
oai_identifier_str oai:ojs.periodicos.ufv.br:article/16329
network_acronym_str UFV-4
network_name_str Revista de Engenharia Química e Química
repository_id_str
spelling Dirac equation solution in the light front via linear algebra and its particularities Solução da equação de Dirac na frente da luz via álgebra linear e suas particularidadesrelativityMinkowski spacecoordinate systemfermionsrelatividade, espaço de Minkowski, sistema de coordenadas, férmionsIn undergraduate and postgraduate courses, it is customary to present the Dirac equation defined in a space of four dimensions: three spatial and one temporal. This article discusses aspects of the Dirac equation (QED) on the light front. This proposal of coordinate transformations comes from Dirac who originally introduced three distinct forms of relativistic dynamics possible depending on the choice we make of the different hypersurfaces constant in time. The first he called instantaneous, the most common form, the hypersurface of which is specified by the boundary conditions set at  . The second, known as the point form, has as its characterizing surface, a hyperboloid, described by the initial conditions in , being  one constant (chosen as the time of this system). The third relativistic form, known as the light front form, has its hypersurface tangent to the light cone; being defined by the initial conditions at , and  is the time in the light front system. The method of this work is deductive. Therefore, one obtains the solution of the Dirac equation for the Free Electron and for the positron in the coordinates in the light front with the particularity of the energy associated with the system being given by , and for moments  we have the electron and  we have the positron. The result of this is that the positive energy states in the light front  and negative   are independently described in the equation, and with additional, the problem at the limit that does not converge. Nos cursos de graduação e pós-graduação costuma-se apresentar a equação de Dirac definida num espaço de quatro dimensões: três espaciais e uma temporal. Este artigo, aborda aspectos da equação de Dirac (QED) na Frente de Luz. Essa proposta de transformações de coordenadas vem de Dirac que originalmente introduziu três formas distintas de dinâmica relativística possíveis, dependendo da escolha que fazemos das diferentes hipersuperfícies constantes no tempo. A primeira ele chamou de forma instantânea, a mais comum, cuja hipersuperfície é especificada pelas condições de contorno definidas em . A segunda, conhecida como forma pontual, tem como superfície caracterizadora, um hiperboloide, descrita pelas condições iniciais em , sendo “” uma constante (escolhida como o tempo desse sistema). A terceira forma relativística, conhecida como forma da frente de luz, tem sua hipersuperfície tangente ao cone de luz, sendo definido pelas condições iniciais em , e  é o tempo para o sistema da frente de luz. O método deste trabalho é dedutivo. Portanto, obtém-se a solução da equação de Dirac para o elétron livre e para o pósitron nas coordenadas da frente de luz com a particularidade da energia associada ao sistema ser dada por , sendo que para momentos  temos o elétron e  temos o pósitron. O resultado disso é que os estados de energia positivo na frente de luz  e negativo  são descritos de forma independente na equação e, com adicional, o problema no limite que não converge. Universidade Federal de Viçosa - UFV2023-08-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1632910.18540/jcecvl9iss9pp16329-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 9 (2023); 16329-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 9 (2023); 16329-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 9 (2023); 16329-01e2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/16329/8137Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSales, Jorge Henrique de OliveiraAragão, Gabriel de OliveiraNascimento, Diego Ramos doThibes, Ronaldo2023-11-26T15:36:25Zoai:ojs.periodicos.ufv.br:article/16329Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2023-11-26T15:36:25Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Dirac equation solution in the light front via linear algebra and its particularities
Solução da equação de Dirac na frente da luz via álgebra linear e suas particularidades
title Dirac equation solution in the light front via linear algebra and its particularities
spellingShingle Dirac equation solution in the light front via linear algebra and its particularities
Sales, Jorge Henrique de Oliveira
relativity
Minkowski space
coordinate system
fermions
relatividade, espaço de Minkowski, sistema de coordenadas, férmions
title_short Dirac equation solution in the light front via linear algebra and its particularities
title_full Dirac equation solution in the light front via linear algebra and its particularities
title_fullStr Dirac equation solution in the light front via linear algebra and its particularities
title_full_unstemmed Dirac equation solution in the light front via linear algebra and its particularities
title_sort Dirac equation solution in the light front via linear algebra and its particularities
author Sales, Jorge Henrique de Oliveira
author_facet Sales, Jorge Henrique de Oliveira
Aragão, Gabriel de Oliveira
Nascimento, Diego Ramos do
Thibes, Ronaldo
author_role author
author2 Aragão, Gabriel de Oliveira
Nascimento, Diego Ramos do
Thibes, Ronaldo
author2_role author
author
author
dc.contributor.author.fl_str_mv Sales, Jorge Henrique de Oliveira
Aragão, Gabriel de Oliveira
Nascimento, Diego Ramos do
Thibes, Ronaldo
dc.subject.por.fl_str_mv relativity
Minkowski space
coordinate system
fermions
relatividade, espaço de Minkowski, sistema de coordenadas, férmions
topic relativity
Minkowski space
coordinate system
fermions
relatividade, espaço de Minkowski, sistema de coordenadas, férmions
description In undergraduate and postgraduate courses, it is customary to present the Dirac equation defined in a space of four dimensions: three spatial and one temporal. This article discusses aspects of the Dirac equation (QED) on the light front. This proposal of coordinate transformations comes from Dirac who originally introduced three distinct forms of relativistic dynamics possible depending on the choice we make of the different hypersurfaces constant in time. The first he called instantaneous, the most common form, the hypersurface of which is specified by the boundary conditions set at  . The second, known as the point form, has as its characterizing surface, a hyperboloid, described by the initial conditions in , being  one constant (chosen as the time of this system). The third relativistic form, known as the light front form, has its hypersurface tangent to the light cone; being defined by the initial conditions at , and  is the time in the light front system. The method of this work is deductive. Therefore, one obtains the solution of the Dirac equation for the Free Electron and for the positron in the coordinates in the light front with the particularity of the energy associated with the system being given by , and for moments  we have the electron and  we have the positron. The result of this is that the positive energy states in the light front  and negative   are independently described in the equation, and with additional, the problem at the limit that does not converge. 
publishDate 2023
dc.date.none.fl_str_mv 2023-08-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/16329
10.18540/jcecvl9iss9pp16329-01e
url https://periodicos.ufv.br/jcec/article/view/16329
identifier_str_mv 10.18540/jcecvl9iss9pp16329-01e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/16329/8137
dc.rights.driver.fl_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 9 No. 9 (2023); 16329-01e
The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 9 (2023); 16329-01e
The Journal of Engineering and Exact Sciences; v. 9 n. 9 (2023); 16329-01e
2527-1075
reponame:Revista de Engenharia Química e Química
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str Revista de Engenharia Química e Química
collection Revista de Engenharia Química e Química
repository.name.fl_str_mv Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv jcec.journal@ufv.br||req2@ufv.br
_version_ 1800211191269687296