Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista de Engenharia Química e Química |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/14713 |
Resumo: | Mathematical and combinatorial techniques with nonnegative integers are used as computing algorithms for the programs development to apply in artificial intelligence and cybersecurity. Methodological advances in combinatorics and mathematics play a vital role in artificial intelligence and machine learning for data analysis and artificial intelligence-based cybersecurity for protection of the computing systems, devices, networks, programs and data from cyber-attacks. In connection with these ideas, this article is prepared for applications in computing science and cybersecurity. This paper presents computing and combinatorial formulae such as theorems on factorials, binomial, and multinomial coefficients and probability and binomial distributions. |
id |
UFV-4_4d915079d5f5ee7549330986d82fb9b1 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/14713 |
network_acronym_str |
UFV-4 |
network_name_str |
Revista de Engenharia Química e Química |
repository_id_str |
|
spelling |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurityalgorithm, combinatorics, computation, multinomial coefficientMathematical and combinatorial techniques with nonnegative integers are used as computing algorithms for the programs development to apply in artificial intelligence and cybersecurity. Methodological advances in combinatorics and mathematics play a vital role in artificial intelligence and machine learning for data analysis and artificial intelligence-based cybersecurity for protection of the computing systems, devices, networks, programs and data from cyber-attacks. In connection with these ideas, this article is prepared for applications in computing science and cybersecurity. This paper presents computing and combinatorial formulae such as theorems on factorials, binomial, and multinomial coefficients and probability and binomial distributions.Universidade Federal de Viçosa - UFV2022-09-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo, Manuscrito, Eventosapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1471310.18540/jcecvl8iss8pp14713-01iThe Journal of Engineering and Exact Sciences; Vol. 8 No. 8 (2022); 14713-01iThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 8 (2022); 14713-01iThe Journal of Engineering and Exact Sciences; v. 8 n. 8 (2022); 14713-01i2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/14713/7493Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAnnamalai, Chinnaraji2022-11-08T19:41:15Zoai:ojs.periodicos.ufv.br:article/14713Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2022-11-08T19:41:15Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
title |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
spellingShingle |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity Annamalai, Chinnaraji algorithm, combinatorics, computation, multinomial coefficient |
title_short |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
title_full |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
title_fullStr |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
title_full_unstemmed |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
title_sort |
Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity |
author |
Annamalai, Chinnaraji |
author_facet |
Annamalai, Chinnaraji |
author_role |
author |
dc.contributor.author.fl_str_mv |
Annamalai, Chinnaraji |
dc.subject.por.fl_str_mv |
algorithm, combinatorics, computation, multinomial coefficient |
topic |
algorithm, combinatorics, computation, multinomial coefficient |
description |
Mathematical and combinatorial techniques with nonnegative integers are used as computing algorithms for the programs development to apply in artificial intelligence and cybersecurity. Methodological advances in combinatorics and mathematics play a vital role in artificial intelligence and machine learning for data analysis and artificial intelligence-based cybersecurity for protection of the computing systems, devices, networks, programs and data from cyber-attacks. In connection with these ideas, this article is prepared for applications in computing science and cybersecurity. This paper presents computing and combinatorial formulae such as theorems on factorials, binomial, and multinomial coefficients and probability and binomial distributions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-29 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo, Manuscrito, Eventos |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/14713 10.18540/jcecvl8iss8pp14713-01i |
url |
https://periodicos.ufv.br/jcec/article/view/14713 |
identifier_str_mv |
10.18540/jcecvl8iss8pp14713-01i |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/14713/7493 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 8 No. 8 (2022); 14713-01i The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 8 (2022); 14713-01i The Journal of Engineering and Exact Sciences; v. 8 n. 8 (2022); 14713-01i 2527-1075 reponame:Revista de Engenharia Química e Química instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
Revista de Engenharia Química e Química |
collection |
Revista de Engenharia Química e Química |
repository.name.fl_str_mv |
Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
jcec.journal@ufv.br||req2@ufv.br |
_version_ |
1800211190681436160 |