Thermal effects of AISI 304-L stainless steel after laser irradiation

Detalhes bibliográficos
Autor(a) principal: Hirata, Anderson Kenji
Data de Publicação: 2023
Outros Autores: Santos, Claudio Luis dos, Vicente, Helder de Paula, Dyer, Paulo Paiva Oliveira Leite, Vasconcelos, Getulio de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Engenharia Química e Química
Texto Completo: https://periodicos.ufv.br/jcec/article/view/17806
Resumo: Laser Directed Energy Deposition (L-DED) is one of the Additive Manufacturing (AM) techniques that has emerged in recent years, and it is one of the disruptive technologies of the Industry 4.0. The selection of welding parameters of the L-DED system is critical for obtaining the desired results in metal deposition, however, due to its intrinsic nonlinear behavior in the process, the suitable choices need to be investigated. In this work it is presented an experimental setup to study the thermal effects on the metal substrate during the process of irradiation. With 40% and 60% of laser beam power, the irradiation results showed only a change in color, but no change in roughness or melting pool was formed. However, with 68% of laser power, a considerable increase of the substrate average temperature with values of more than 100°C at each adjacent track created was observed. The heat affected zone (HAZ) in this sample is expanded in both length and width as the temperature rises due the accumulation of heat during the irradiation process. It is concluded that the temperature of the substrate and other related process variables to be investigated must be controlled to achieve the desired bead formation.
id UFV-4_73635bc27ad573463684af728b4ed821
oai_identifier_str oai:ojs.periodicos.ufv.br:article/17806
network_acronym_str UFV-4
network_name_str Revista de Engenharia Química e Química
repository_id_str
spelling Thermal effects of AISI 304-L stainless steel after laser irradiationEfectos térmicos del acero inoxidable AISI 304-L después de la irradiación láserEffets thermiques de l'acier inoxydable AISI 304-L après irradiation laserThermal effects of AISI 304-L stainless steel after laser irradiationAdditive ManufacturingDirected Energy DepositionLaser ProcessingManufatura AditivaDeposição por Energia DiretaProcessamento LaserFabricación aditivaDeposición de energía dirigidaProcesamiento láserLa fabrication additiveDépôt d’énergie dirigéTraitement laserLaser Directed Energy Deposition (L-DED) is one of the Additive Manufacturing (AM) techniques that has emerged in recent years, and it is one of the disruptive technologies of the Industry 4.0. The selection of welding parameters of the L-DED system is critical for obtaining the desired results in metal deposition, however, due to its intrinsic nonlinear behavior in the process, the suitable choices need to be investigated. In this work it is presented an experimental setup to study the thermal effects on the metal substrate during the process of irradiation. With 40% and 60% of laser beam power, the irradiation results showed only a change in color, but no change in roughness or melting pool was formed. However, with 68% of laser power, a considerable increase of the substrate average temperature with values of more than 100°C at each adjacent track created was observed. The heat affected zone (HAZ) in this sample is expanded in both length and width as the temperature rises due the accumulation of heat during the irradiation process. It is concluded that the temperature of the substrate and other related process variables to be investigated must be controlled to achieve the desired bead formation.La Deposición de Energía Dirigida por Láser (L-DED) es una de las técnicas de Fabricación Aditiva (AM) que ha surgido en los últimos años, y es una de las tecnologías disruptivas de la Industria 4.0. La selección de los parámetros de soldadura del sistema L-DED es crítica para obtener los resultados deseados en la deposición de metal; sin embargo, debido a su comportamiento intrínseco no lineal en el proceso, es necesario investigar las opciones adecuadas. En este trabajo se presenta un montaje experimental para estudiar los efectos térmicos sobre el sustrato metálico durante el proceso de irradiación. Con 40% y 60% de la potencia del rayo láser, los resultados de la irradiación mostraron solo un cambio de color, pero no se formó ningún cambio en la rugosidad o charco de fusión. Sin embargo, con un 68% de potencia del láser, se observó un aumento considerable de la temperatura media del sustrato con valores superiores a 100°C en cada pista adyacente creada. La zona afectada por el calor (HAZ) en esta muestra se expande tanto en longitud como en ancho a medida que aumenta la temperatura debido a la acumulación de calor durante el proceso de irradiación. Se concluye que la temperatura del sustrato y otras variables relacionadas del proceso a investigar deben controlarse para lograr la formación de perlas deseada.Le dépôt d'énergie dirigé par laser (L-DED) est l'une des techniques de fabrication additive (FA) apparues ces dernières années et l'une des technologies disruptives de l'Industrie 4.0. La sélection des paramètres de soudage du système L-DED est essentielle pour obtenir les résultats souhaités en matière de dépôt de métal. Cependant, en raison de son comportement non linéaire intrinsèque dans le processus, les choix appropriés doivent être étudiés. Dans ce travail, on présente un dispositif expérimental pour étudier les effets thermiques sur le substrat métallique pendant le processus d'irradiation. Avec 40 % et 60 % de la puissance du faisceau laser, les résultats d’irradiation ont montré uniquement un changement de couleur, mais aucun changement de rugosité ni de bain de fusion ne s’est formé. Cependant, avec 68% de puissance laser, une augmentation considérable de la température moyenne du substrat avec des valeurs supérieures à 100°C à chaque piste adjacente créée a été observée. La zone affectée par la chaleur (ZAT) dans cet échantillon s'étend à la fois en longueur et en largeur à mesure que la température augmente en raison de l'accumulation de chaleur pendant le processus d'irradiation. Il est conclu que la température du substrat et d’autres variables de processus associées à étudier doivent être contrôlées pour obtenir la formation de perles souhaitée.Laser Directed Energy Deposition (L-DED) is one of the Additive Manufacturing (AM) techniques that has emerged in recent years, and it is one of the disruptive technologies of the Industry 4.0. The selection of welding parameters of the L-DED system is critical for obtaining the desired results in metal deposition, however, due to its intrinsic nonlinear behavior in the process, the suitable choices need to be investigated. In this work it is presented an experimental setup to study the thermal effects on the metal substrate during the process of irradiation. With 40% and 60% of laser beam power, the irradiation results showed only a change in color, but no change in roughness or melting pool was formed. However, with 68% of laser power, a considerable increase of the substrate average temperature with values of more than 100°C at each adjacent track created was observed. The heat affected zone (HAZ) in this sample is expanded in both length and width as the temperature rises due the accumulation of heat during the irradiation process. It is concluded that the temperature of the substrate and other related process variables to be investigated must be controlled to achieve the desired bead formation.Universidade Federal de Viçosa - UFV2023-12-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1780610.18540/jcecvl9iss11pp17806The Journal of Engineering and Exact Sciences; Vol. 9 No. 11 (2023); 17806The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 11 (2023); 17806The Journal of Engineering and Exact Sciences; v. 9 n. 11 (2023); 178062527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/17806/9118Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessHirata, Anderson KenjiSantos, Claudio Luis dosVicente, Helder de PaulaDyer, Paulo Paiva Oliveira LeiteVasconcelos, Getulio de2024-03-26T17:20:57Zoai:ojs.periodicos.ufv.br:article/17806Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2024-03-26T17:20:57Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Thermal effects of AISI 304-L stainless steel after laser irradiation
Efectos térmicos del acero inoxidable AISI 304-L después de la irradiación láser
Effets thermiques de l'acier inoxydable AISI 304-L après irradiation laser
Thermal effects of AISI 304-L stainless steel after laser irradiation
title Thermal effects of AISI 304-L stainless steel after laser irradiation
spellingShingle Thermal effects of AISI 304-L stainless steel after laser irradiation
Hirata, Anderson Kenji
Additive Manufacturing
Directed Energy Deposition
Laser Processing
Manufatura Aditiva
Deposição por Energia Direta
Processamento Laser
Fabricación aditiva
Deposición de energía dirigida
Procesamiento láser
La fabrication additive
Dépôt d’énergie dirigé
Traitement laser
title_short Thermal effects of AISI 304-L stainless steel after laser irradiation
title_full Thermal effects of AISI 304-L stainless steel after laser irradiation
title_fullStr Thermal effects of AISI 304-L stainless steel after laser irradiation
title_full_unstemmed Thermal effects of AISI 304-L stainless steel after laser irradiation
title_sort Thermal effects of AISI 304-L stainless steel after laser irradiation
author Hirata, Anderson Kenji
author_facet Hirata, Anderson Kenji
Santos, Claudio Luis dos
Vicente, Helder de Paula
Dyer, Paulo Paiva Oliveira Leite
Vasconcelos, Getulio de
author_role author
author2 Santos, Claudio Luis dos
Vicente, Helder de Paula
Dyer, Paulo Paiva Oliveira Leite
Vasconcelos, Getulio de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Hirata, Anderson Kenji
Santos, Claudio Luis dos
Vicente, Helder de Paula
Dyer, Paulo Paiva Oliveira Leite
Vasconcelos, Getulio de
dc.subject.por.fl_str_mv Additive Manufacturing
Directed Energy Deposition
Laser Processing
Manufatura Aditiva
Deposição por Energia Direta
Processamento Laser
Fabricación aditiva
Deposición de energía dirigida
Procesamiento láser
La fabrication additive
Dépôt d’énergie dirigé
Traitement laser
topic Additive Manufacturing
Directed Energy Deposition
Laser Processing
Manufatura Aditiva
Deposição por Energia Direta
Processamento Laser
Fabricación aditiva
Deposición de energía dirigida
Procesamiento láser
La fabrication additive
Dépôt d’énergie dirigé
Traitement laser
description Laser Directed Energy Deposition (L-DED) is one of the Additive Manufacturing (AM) techniques that has emerged in recent years, and it is one of the disruptive technologies of the Industry 4.0. The selection of welding parameters of the L-DED system is critical for obtaining the desired results in metal deposition, however, due to its intrinsic nonlinear behavior in the process, the suitable choices need to be investigated. In this work it is presented an experimental setup to study the thermal effects on the metal substrate during the process of irradiation. With 40% and 60% of laser beam power, the irradiation results showed only a change in color, but no change in roughness or melting pool was formed. However, with 68% of laser power, a considerable increase of the substrate average temperature with values of more than 100°C at each adjacent track created was observed. The heat affected zone (HAZ) in this sample is expanded in both length and width as the temperature rises due the accumulation of heat during the irradiation process. It is concluded that the temperature of the substrate and other related process variables to be investigated must be controlled to achieve the desired bead formation.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/17806
10.18540/jcecvl9iss11pp17806
url https://periodicos.ufv.br/jcec/article/view/17806
identifier_str_mv 10.18540/jcecvl9iss11pp17806
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/17806/9118
dc.rights.driver.fl_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 9 No. 11 (2023); 17806
The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 11 (2023); 17806
The Journal of Engineering and Exact Sciences; v. 9 n. 11 (2023); 17806
2527-1075
reponame:Revista de Engenharia Química e Química
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str Revista de Engenharia Química e Química
collection Revista de Engenharia Química e Química
repository.name.fl_str_mv Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv jcec.journal@ufv.br||req2@ufv.br
_version_ 1800211186105450496