Hybrid Models for Daily Global Solar Radiation Assessment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | The Journal of Engineering and Exact Sciences |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/15926 |
Resumo: | Daily solar radiation forecasting has recently become critical in developing solar energy and its integration into grid systems. Despite the huge number of proposed forecasting techniques, an accurate estimation remains a significant challenge because of the non-stationary variation of solar radiation components due to the continuously changing climatic conditions. Usually, several input data predictors are used for the forecasting process, which can cause redundancy and correlation between data features. This work assesses a set of feature selection techniques to check their ability to select the relevant predictors and reduce redundant and irrelevant information. An Artificial Neural Network is used to fit the measured solar radiation based on the selected features. The developed model is evaluated through various objective evaluation metrics using historical data of three years measured at the Ghardaiaregion inAlgeria. Results show the effectiveness of the proposed method, where values of 0,0189, 0.0286, 5.4387, and 98.28% have been found as MABE, RMSE, nRMSE and r, respectively. |
id |
UFV-6_0d568a239dc0053b7f55365c86730dc4 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/15926 |
network_acronym_str |
UFV-6 |
network_name_str |
The Journal of Engineering and Exact Sciences |
repository_id_str |
|
spelling |
Hybrid Models for Daily Global Solar Radiation Assessment Modelos híbridos para la evaluación diaria de la radiación solar global Solar radiation, renewable energy, features selection, Forecasting, Artificial Neural Networks.Radiación solar, energías renovables, selección de características, Forecasting, Redes Neuronales Artificiales.Daily solar radiation forecasting has recently become critical in developing solar energy and its integration into grid systems. Despite the huge number of proposed forecasting techniques, an accurate estimation remains a significant challenge because of the non-stationary variation of solar radiation components due to the continuously changing climatic conditions. Usually, several input data predictors are used for the forecasting process, which can cause redundancy and correlation between data features. This work assesses a set of feature selection techniques to check their ability to select the relevant predictors and reduce redundant and irrelevant information. An Artificial Neural Network is used to fit the measured solar radiation based on the selected features. The developed model is evaluated through various objective evaluation metrics using historical data of three years measured at the Ghardaiaregion inAlgeria. Results show the effectiveness of the proposed method, where values of 0,0189, 0.0286, 5.4387, and 98.28% have been found as MABE, RMSE, nRMSE and r, respectively.La previsión diaria de la radiación solar se ha vuelto fundamental recientemente en el desarrollo de la energía solar y su integración en los sistemas de red. A pesar de la gran cantidad de técnicas de pronóstico propuestas, una estimación precisa sigue siendo un desafío importante debido a la variación no estacionaria de los componentes de la radiación solar debido a las condiciones climáticas en constante cambio. Por lo general, se utilizan varios predictores de datos de entrada para el proceso de pronóstico, lo que puede causar redundancia y correlación entre las características de los datos. Este trabajo evalúa un conjunto de técnicas de selección de características para verificar su capacidad para seleccionar los predictores relevantes y reducir la información redundante e irrelevante. Se utiliza una red neuronal artificial para ajustar la radiación solar medida en función de las características seleccionadas. El modelo desarrollado se evalúa a través de varias métricas de evaluación objetiva utilizando datos históricos de tres años medidos en la región de Ghardaia en Argelia. Los resultados muestran la efectividad del método propuesto, donde se han encontrado valores de 0,0189, 0,0286, 5,4387 y 98,28% como MABE, RMSE, nRMSE y r, respectivamente.Universidade Federal de Viçosa - UFV2023-06-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1592610.18540/jcecvl9iss4pp15926-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 4 (2023); 15926-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 4 (2023); 15926-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 4 (2023); 15926-01e2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/15926/7996Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouahlia, AbdelkerimRabehi, AbdelhalimRabehi, Abdelazize2023-06-17T11:53:52Zoai:ojs.periodicos.ufv.br:article/15926Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2023-06-17T11:53:52The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Hybrid Models for Daily Global Solar Radiation Assessment Modelos híbridos para la evaluación diaria de la radiación solar global |
title |
Hybrid Models for Daily Global Solar Radiation Assessment |
spellingShingle |
Hybrid Models for Daily Global Solar Radiation Assessment Souahlia, Abdelkerim Solar radiation, renewable energy, features selection, Forecasting, Artificial Neural Networks. Radiación solar, energías renovables, selección de características, Forecasting, Redes Neuronales Artificiales. |
title_short |
Hybrid Models for Daily Global Solar Radiation Assessment |
title_full |
Hybrid Models for Daily Global Solar Radiation Assessment |
title_fullStr |
Hybrid Models for Daily Global Solar Radiation Assessment |
title_full_unstemmed |
Hybrid Models for Daily Global Solar Radiation Assessment |
title_sort |
Hybrid Models for Daily Global Solar Radiation Assessment |
author |
Souahlia, Abdelkerim |
author_facet |
Souahlia, Abdelkerim Rabehi, Abdelhalim Rabehi, Abdelazize |
author_role |
author |
author2 |
Rabehi, Abdelhalim Rabehi, Abdelazize |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Souahlia, Abdelkerim Rabehi, Abdelhalim Rabehi, Abdelazize |
dc.subject.por.fl_str_mv |
Solar radiation, renewable energy, features selection, Forecasting, Artificial Neural Networks. Radiación solar, energías renovables, selección de características, Forecasting, Redes Neuronales Artificiales. |
topic |
Solar radiation, renewable energy, features selection, Forecasting, Artificial Neural Networks. Radiación solar, energías renovables, selección de características, Forecasting, Redes Neuronales Artificiales. |
description |
Daily solar radiation forecasting has recently become critical in developing solar energy and its integration into grid systems. Despite the huge number of proposed forecasting techniques, an accurate estimation remains a significant challenge because of the non-stationary variation of solar radiation components due to the continuously changing climatic conditions. Usually, several input data predictors are used for the forecasting process, which can cause redundancy and correlation between data features. This work assesses a set of feature selection techniques to check their ability to select the relevant predictors and reduce redundant and irrelevant information. An Artificial Neural Network is used to fit the measured solar radiation based on the selected features. The developed model is evaluated through various objective evaluation metrics using historical data of three years measured at the Ghardaiaregion inAlgeria. Results show the effectiveness of the proposed method, where values of 0,0189, 0.0286, 5.4387, and 98.28% have been found as MABE, RMSE, nRMSE and r, respectively. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/15926 10.18540/jcecvl9iss4pp15926-01e |
url |
https://periodicos.ufv.br/jcec/article/view/15926 |
identifier_str_mv |
10.18540/jcecvl9iss4pp15926-01e |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/15926/7996 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 9 No. 4 (2023); 15926-01e The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 4 (2023); 15926-01e The Journal of Engineering and Exact Sciences; v. 9 n. 4 (2023); 15926-01e 2527-1075 reponame:The Journal of Engineering and Exact Sciences instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
The Journal of Engineering and Exact Sciences |
collection |
The Journal of Engineering and Exact Sciences |
repository.name.fl_str_mv |
The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
|
_version_ |
1808845239830446080 |