Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.postharvbio.2013.06.005 http://www.locus.ufv.br/handle/123456789/21467 |
Resumo: | Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA's ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common causal organisms of sugarbeet storage rot, freshly harvested roots were treated with 0.01, 0.1, 1.0 or 10 mM SA, inoculated with Botrytis cinerea, Penicillium claviforme, or Phoma betae, and evaluated for the severity of rot symptoms after incubation at 20 °C and 90% relative humidity. Roots were obtained from plants that received sufficient water or were water-stressed prior to harvest. Roots from water-stressed plants were included since water-stress increases sugarbeet root susceptibility to storage rot and SA mitigates drought effects in other plant species. SA at concentrations of 0.01–10 mM had no effect on the severity of storage rot caused by B. cinerea, P. claviforme, or P. betae in roots from plants that received sufficient water prior to harvest. However, SA at these same concentrations reduced the severity of rot symptoms for all three pathogens in roots from plants that were water stressed before harvest. For water-stressed roots, all concentrations of SA produced statistically equivalent reductions in the weight of rotted tissue for each pathogen, and on average, SA reduced rot severity due to B. cinerea, P. claviforme, and P. betae by 54, 45, and 58%, respectively. SA reduced rot from all three pathogens by reducing lesion size, but did not affect the incidence of infection. The ability of SA to reduce rot severity in water-stressed roots, but not in roots that received sufficient water before harvest suggests that SA alleviated the negative impact of water stress but did not directly protect sugarbeet roots against storage rots. |
id |
UFV_017e6fe41f5bf8deb51efa200df05e8f |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/21467 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Fugate, Karen KlotzFerrareze, Jocleita PeruzzoBolton, Melvin D.Deckard, Edward L.Campbell, Larry G.Finger, Fernando L.2018-08-28T12:30:09Z2018-08-28T12:30:09Z2013-1109255214https://doi.org/10.1016/j.postharvbio.2013.06.005http://www.locus.ufv.br/handle/123456789/21467Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA's ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common causal organisms of sugarbeet storage rot, freshly harvested roots were treated with 0.01, 0.1, 1.0 or 10 mM SA, inoculated with Botrytis cinerea, Penicillium claviforme, or Phoma betae, and evaluated for the severity of rot symptoms after incubation at 20 °C and 90% relative humidity. Roots were obtained from plants that received sufficient water or were water-stressed prior to harvest. Roots from water-stressed plants were included since water-stress increases sugarbeet root susceptibility to storage rot and SA mitigates drought effects in other plant species. SA at concentrations of 0.01–10 mM had no effect on the severity of storage rot caused by B. cinerea, P. claviforme, or P. betae in roots from plants that received sufficient water prior to harvest. However, SA at these same concentrations reduced the severity of rot symptoms for all three pathogens in roots from plants that were water stressed before harvest. For water-stressed roots, all concentrations of SA produced statistically equivalent reductions in the weight of rotted tissue for each pathogen, and on average, SA reduced rot severity due to B. cinerea, P. claviforme, and P. betae by 54, 45, and 58%, respectively. SA reduced rot from all three pathogens by reducing lesion size, but did not affect the incidence of infection. The ability of SA to reduce rot severity in water-stressed roots, but not in roots that received sufficient water before harvest suggests that SA alleviated the negative impact of water stress but did not directly protect sugarbeet roots against storage rots.engElsevier Postharvest Biology and Technologyv. 85, p. 162- 166, november 2013Elsevier B.V.info:eu-repo/semantics/openAccessBeta vulgarisBotrytis cinerea Pers. ex Fr.Clamp rotDroughtPenicillium claviforme BainierPhoma betae FrankPostharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet rootsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1144660https://locus.ufv.br//bitstream/123456789/21467/1/artigo.pdfae0e0b6d3f43ff9e310f9c009a508d15MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21467/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4672https://locus.ufv.br//bitstream/123456789/21467/3/artigo.pdf.jpg7f9e5be6a50bb44f37eb90dd6861534fMD53123456789/214672018-08-28 23:00:38.851oai:locus.ufv.br:123456789/21467Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-08-29T02:00:38LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
title |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
spellingShingle |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots Fugate, Karen Klotz Beta vulgaris Botrytis cinerea Pers. ex Fr. Clamp rot Drought Penicillium claviforme Bainier Phoma betae Frank |
title_short |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
title_full |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
title_fullStr |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
title_full_unstemmed |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
title_sort |
Postharvest salicylic acid treatment reduces storage rots in water-stressed but not unstressed sugarbeet roots |
author |
Fugate, Karen Klotz |
author_facet |
Fugate, Karen Klotz Ferrareze, Jocleita Peruzzo Bolton, Melvin D. Deckard, Edward L. Campbell, Larry G. Finger, Fernando L. |
author_role |
author |
author2 |
Ferrareze, Jocleita Peruzzo Bolton, Melvin D. Deckard, Edward L. Campbell, Larry G. Finger, Fernando L. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Fugate, Karen Klotz Ferrareze, Jocleita Peruzzo Bolton, Melvin D. Deckard, Edward L. Campbell, Larry G. Finger, Fernando L. |
dc.subject.pt-BR.fl_str_mv |
Beta vulgaris Botrytis cinerea Pers. ex Fr. Clamp rot Drought Penicillium claviforme Bainier Phoma betae Frank |
topic |
Beta vulgaris Botrytis cinerea Pers. ex Fr. Clamp rot Drought Penicillium claviforme Bainier Phoma betae Frank |
description |
Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA's ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common causal organisms of sugarbeet storage rot, freshly harvested roots were treated with 0.01, 0.1, 1.0 or 10 mM SA, inoculated with Botrytis cinerea, Penicillium claviforme, or Phoma betae, and evaluated for the severity of rot symptoms after incubation at 20 °C and 90% relative humidity. Roots were obtained from plants that received sufficient water or were water-stressed prior to harvest. Roots from water-stressed plants were included since water-stress increases sugarbeet root susceptibility to storage rot and SA mitigates drought effects in other plant species. SA at concentrations of 0.01–10 mM had no effect on the severity of storage rot caused by B. cinerea, P. claviforme, or P. betae in roots from plants that received sufficient water prior to harvest. However, SA at these same concentrations reduced the severity of rot symptoms for all three pathogens in roots from plants that were water stressed before harvest. For water-stressed roots, all concentrations of SA produced statistically equivalent reductions in the weight of rotted tissue for each pathogen, and on average, SA reduced rot severity due to B. cinerea, P. claviforme, and P. betae by 54, 45, and 58%, respectively. SA reduced rot from all three pathogens by reducing lesion size, but did not affect the incidence of infection. The ability of SA to reduce rot severity in water-stressed roots, but not in roots that received sufficient water before harvest suggests that SA alleviated the negative impact of water stress but did not directly protect sugarbeet roots against storage rots. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-11 |
dc.date.accessioned.fl_str_mv |
2018-08-28T12:30:09Z |
dc.date.available.fl_str_mv |
2018-08-28T12:30:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.postharvbio.2013.06.005 http://www.locus.ufv.br/handle/123456789/21467 |
dc.identifier.issn.none.fl_str_mv |
09255214 |
identifier_str_mv |
09255214 |
url |
https://doi.org/10.1016/j.postharvbio.2013.06.005 http://www.locus.ufv.br/handle/123456789/21467 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 85, p. 162- 166, november 2013 |
dc.rights.driver.fl_str_mv |
Elsevier B.V. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier B.V. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Postharvest Biology and Technology |
publisher.none.fl_str_mv |
Elsevier Postharvest Biology and Technology |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/21467/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/21467/2/license.txt https://locus.ufv.br//bitstream/123456789/21467/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0e0b6d3f43ff9e310f9c009a508d15 8a4605be74aa9ea9d79846c1fba20a33 7f9e5be6a50bb44f37eb90dd6861534f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213091271147520 |