Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1590/18069657rbcs20170413 http://www.locus.ufv.br/handle/123456789/24513 |
Resumo: | Quantification of soil properties is essential for better understanding of the environment and better soil management. The conventional techniques of laboratory analysis are sometimes costly and detrimental to the environment. Thus, development of new techniques for soil analysis that do not generate residues, such as spectroscopy, is increasingly necessary as a viable way to estimate a wide range of soil properties. The objective of this study was to predict the levels of organic carbon (OC), clay, and extractable phosphorus (P), from the spectral responses of soil samples in the visible and near infrared (Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR using different preprocessing methods combined with five prediction models. Soil samples were collected in Iconha, Espírito Santo State, Brazil, in the Ribeirão Inhaúma basin. A total of 184 samples were collected from 92 sites at two depths (0.00-0.10 and 0.10-0.30 m). Physical, chemical, and spectral analyses were performed according to routine soil laboratory methods. Random selection was made of 70 % of total samples for training and 30 % for validation of the models. The coefficient of determination (R2) and root mean square error (RMSE) were calculated in order to assess model performance. The standardized indexes of prediction error RPD and RPIQ were also calculated. For clay and OC, the best R2 was found in the MIR spectrum, at 0.69 and 0.65, respectively, and for P, it was 0.57 in Vis-NIR. The MSC (Multiplicative Scatter Correction), CR (Continuum removal), and SNV (Standard Normal Variate) preprocesses were most efficient for predicting clay, OC, and P, respectively, while the PLSR - Partial Least Squares Regression (OC and P) and SVM - Support Vector Machine (clay) gave the best predictions and are therefore recommended for modeling these properties in the study area. The models identified in this study can be used to discriminate soils according to a critical test value for clay, OC, and P. |
id |
UFV_0cf8b0b9dd04fd6d4ec5031d4c661d4c |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/24513 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Fernandes Filho, Elpídio InácioCampbell, Patrícia Morais da MattaFrancelino, Márcio RochaDemattê, José Alexandre MeloPereira, Marcos GervasioGuimarães, Clécia Cristina BarbosaPinto, Luiz Alberto da Silva Rodrigues2019-04-11T23:58:37Z2019-04-11T23:58:37Z201818069657http://dx.doi.org/10.1590/18069657rbcs20170413http://www.locus.ufv.br/handle/123456789/24513Quantification of soil properties is essential for better understanding of the environment and better soil management. The conventional techniques of laboratory analysis are sometimes costly and detrimental to the environment. Thus, development of new techniques for soil analysis that do not generate residues, such as spectroscopy, is increasingly necessary as a viable way to estimate a wide range of soil properties. The objective of this study was to predict the levels of organic carbon (OC), clay, and extractable phosphorus (P), from the spectral responses of soil samples in the visible and near infrared (Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR using different preprocessing methods combined with five prediction models. Soil samples were collected in Iconha, Espírito Santo State, Brazil, in the Ribeirão Inhaúma basin. A total of 184 samples were collected from 92 sites at two depths (0.00-0.10 and 0.10-0.30 m). Physical, chemical, and spectral analyses were performed according to routine soil laboratory methods. Random selection was made of 70 % of total samples for training and 30 % for validation of the models. The coefficient of determination (R2) and root mean square error (RMSE) were calculated in order to assess model performance. The standardized indexes of prediction error RPD and RPIQ were also calculated. For clay and OC, the best R2 was found in the MIR spectrum, at 0.69 and 0.65, respectively, and for P, it was 0.57 in Vis-NIR. The MSC (Multiplicative Scatter Correction), CR (Continuum removal), and SNV (Standard Normal Variate) preprocesses were most efficient for predicting clay, OC, and P, respectively, while the PLSR - Partial Least Squares Regression (OC and P) and SVM - Support Vector Machine (clay) gave the best predictions and are therefore recommended for modeling these properties in the study area. The models identified in this study can be used to discriminate soils according to a critical test value for clay, OC, and P.engRevista Brasileira de Ciência do Solov. 42, e0170413, p. 01- 19, 2018Spectral analysisReflectanceChemometricsDigital soil mapping of soil properties in the “Mar de Morros” environment using spectral datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf598815https://locus.ufv.br//bitstream/123456789/24513/1/artigo.pdfb9ef0000ac75161268359513bf4ea702MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/24513/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/245132019-04-11 21:05:16.462oai:locus.ufv.br:123456789/24513Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-04-12T00:05:16LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
title |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
spellingShingle |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data Fernandes Filho, Elpídio Inácio Spectral analysis Reflectance Chemometrics |
title_short |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
title_full |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
title_fullStr |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
title_full_unstemmed |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
title_sort |
Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data |
author |
Fernandes Filho, Elpídio Inácio |
author_facet |
Fernandes Filho, Elpídio Inácio Campbell, Patrícia Morais da Matta Francelino, Márcio Rocha Demattê, José Alexandre Melo Pereira, Marcos Gervasio Guimarães, Clécia Cristina Barbosa Pinto, Luiz Alberto da Silva Rodrigues |
author_role |
author |
author2 |
Campbell, Patrícia Morais da Matta Francelino, Márcio Rocha Demattê, José Alexandre Melo Pereira, Marcos Gervasio Guimarães, Clécia Cristina Barbosa Pinto, Luiz Alberto da Silva Rodrigues |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Fernandes Filho, Elpídio Inácio Campbell, Patrícia Morais da Matta Francelino, Márcio Rocha Demattê, José Alexandre Melo Pereira, Marcos Gervasio Guimarães, Clécia Cristina Barbosa Pinto, Luiz Alberto da Silva Rodrigues |
dc.subject.pt-BR.fl_str_mv |
Spectral analysis Reflectance Chemometrics |
topic |
Spectral analysis Reflectance Chemometrics |
description |
Quantification of soil properties is essential for better understanding of the environment and better soil management. The conventional techniques of laboratory analysis are sometimes costly and detrimental to the environment. Thus, development of new techniques for soil analysis that do not generate residues, such as spectroscopy, is increasingly necessary as a viable way to estimate a wide range of soil properties. The objective of this study was to predict the levels of organic carbon (OC), clay, and extractable phosphorus (P), from the spectral responses of soil samples in the visible and near infrared (Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR using different preprocessing methods combined with five prediction models. Soil samples were collected in Iconha, Espírito Santo State, Brazil, in the Ribeirão Inhaúma basin. A total of 184 samples were collected from 92 sites at two depths (0.00-0.10 and 0.10-0.30 m). Physical, chemical, and spectral analyses were performed according to routine soil laboratory methods. Random selection was made of 70 % of total samples for training and 30 % for validation of the models. The coefficient of determination (R2) and root mean square error (RMSE) were calculated in order to assess model performance. The standardized indexes of prediction error RPD and RPIQ were also calculated. For clay and OC, the best R2 was found in the MIR spectrum, at 0.69 and 0.65, respectively, and for P, it was 0.57 in Vis-NIR. The MSC (Multiplicative Scatter Correction), CR (Continuum removal), and SNV (Standard Normal Variate) preprocesses were most efficient for predicting clay, OC, and P, respectively, while the PLSR - Partial Least Squares Regression (OC and P) and SVM - Support Vector Machine (clay) gave the best predictions and are therefore recommended for modeling these properties in the study area. The models identified in this study can be used to discriminate soils according to a critical test value for clay, OC, and P. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018 |
dc.date.accessioned.fl_str_mv |
2019-04-11T23:58:37Z |
dc.date.available.fl_str_mv |
2019-04-11T23:58:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/18069657rbcs20170413 http://www.locus.ufv.br/handle/123456789/24513 |
dc.identifier.issn.none.fl_str_mv |
18069657 |
identifier_str_mv |
18069657 |
url |
http://dx.doi.org/10.1590/18069657rbcs20170413 http://www.locus.ufv.br/handle/123456789/24513 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 42, e0170413, p. 01- 19, 2018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/24513/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/24513/2/license.txt |
bitstream.checksum.fl_str_mv |
b9ef0000ac75161268359513bf4ea702 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212847519170560 |