Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://www.locus.ufv.br/handle/123456789/9290 |
Resumo: | O objetivo deste estudo foi estimar o volume e o afilamento do fuste de eucalipto em sistemas agrossilvipastoris em quatro municípios da Zona da Mata mineira, comparando modelos de regressão e redes neurais artificiais, e analisar o potencial de multiprodutos da madeira em um sistema agrossilvipastoril. Os dados foram provenientes de cinco sistemas agrossilvipastoris, localizados em quatro municípios, com diferentes arranjos espaciais (8 x 3 m, 10 x 3 m, 11 x 3 m, 12 x 3 m, 12 x 2 m e 12 x 4 m), idades (5,5; 6,5 e 8 anos) e genótipos (GG100, 3336, CRV 1189 e I144), para os quais foram cubadas 122 árvores- amostra. Foram ajustados um modelo hipsométrico, dois volumétricos e quatro de afilamento do fuste, considerando todos os dados e a estratificação dos mesmos por localidade, arranjo espacial e genótipo. Em seguida, foram aplicados testes de identidade para verificar a viabilidade de equações específicas por estrato. Redes neurais artificias (RNA) do tipo Multilayer Perceptron foram treinadas, utilizando como variáveis de entrada categóricas o arranjo espacial, a localidade e os genótipos. As variáveis de entrada contínuas utilizadas para geração das estimativas hipsométricas foram o diâmetro à altura do peito - 1,30 m de altura (dap), altura dominante (hd) e idade. Para obtenção das estimativas volumétricas utilizou-se o dap, altura total (Ht) e idade. Com relação às variáveis de entrada contínuas utilizadas na geração de estimativas do afilamento do fuste, além do dap, Ht e idade, utilizou-se a altura de cada seção (h). A precisão dos métodos foi avaliada por meio das estatísticas da raiz quadrática do erro quadrático médio, correlação entre valores observados e estimados, dispersão dos erros percentuais, e o desvio médio absoluto. As equações obtidas com ajuste do modelo proposto por Campos et al. (1984), Schumacher e Hall (1933) e Garay (1979) apresentaram maior exatidão. Constatou-se que, assim como os modelos de regressão, as RNA foram metodologias eficientes para estimar o volume e o afilamento do fuste de árvores de eucalipto em sistemas agrossilvipastoris na região da Zona da Mata mineira, e que as árvores do sistema agrossilvipastoril estudado apresentaram maior potencial de retorno financeiro quando destinadas a multiprodutos. Palavras- chave: sistema agroflorestal, produção de madeira, taper, multiprodutos, eucalipto. |
id |
UFV_0fa478d36f97da42bdbc191a297d03db |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/9290 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Leite, Helio GarciaSilva, Simonehttp://lattes.cnpq.br/7983850440016108Oliveira Neto, Sílvio Nolasco de2017-01-04T15:28:28Z2017-01-04T15:28:28Z2016-07-22SILVA, Simone. Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira. 2016. 96f. Dissertação (Mestrado em Ciência Florestal) - Universidade Federal de Viçosa, Viçosa. 2016.http://www.locus.ufv.br/handle/123456789/9290O objetivo deste estudo foi estimar o volume e o afilamento do fuste de eucalipto em sistemas agrossilvipastoris em quatro municípios da Zona da Mata mineira, comparando modelos de regressão e redes neurais artificiais, e analisar o potencial de multiprodutos da madeira em um sistema agrossilvipastoril. Os dados foram provenientes de cinco sistemas agrossilvipastoris, localizados em quatro municípios, com diferentes arranjos espaciais (8 x 3 m, 10 x 3 m, 11 x 3 m, 12 x 3 m, 12 x 2 m e 12 x 4 m), idades (5,5; 6,5 e 8 anos) e genótipos (GG100, 3336, CRV 1189 e I144), para os quais foram cubadas 122 árvores- amostra. Foram ajustados um modelo hipsométrico, dois volumétricos e quatro de afilamento do fuste, considerando todos os dados e a estratificação dos mesmos por localidade, arranjo espacial e genótipo. Em seguida, foram aplicados testes de identidade para verificar a viabilidade de equações específicas por estrato. Redes neurais artificias (RNA) do tipo Multilayer Perceptron foram treinadas, utilizando como variáveis de entrada categóricas o arranjo espacial, a localidade e os genótipos. As variáveis de entrada contínuas utilizadas para geração das estimativas hipsométricas foram o diâmetro à altura do peito - 1,30 m de altura (dap), altura dominante (hd) e idade. Para obtenção das estimativas volumétricas utilizou-se o dap, altura total (Ht) e idade. Com relação às variáveis de entrada contínuas utilizadas na geração de estimativas do afilamento do fuste, além do dap, Ht e idade, utilizou-se a altura de cada seção (h). A precisão dos métodos foi avaliada por meio das estatísticas da raiz quadrática do erro quadrático médio, correlação entre valores observados e estimados, dispersão dos erros percentuais, e o desvio médio absoluto. As equações obtidas com ajuste do modelo proposto por Campos et al. (1984), Schumacher e Hall (1933) e Garay (1979) apresentaram maior exatidão. Constatou-se que, assim como os modelos de regressão, as RNA foram metodologias eficientes para estimar o volume e o afilamento do fuste de árvores de eucalipto em sistemas agrossilvipastoris na região da Zona da Mata mineira, e que as árvores do sistema agrossilvipastoril estudado apresentaram maior potencial de retorno financeiro quando destinadas a multiprodutos. Palavras- chave: sistema agroflorestal, produção de madeira, taper, multiprodutos, eucalipto.The aim of this study was to estimate the volume and the taper of eucalypt stem in agrosilvopastoral systems in four municipalities of the Zona da Mata region, comparing regression models and artificial neural networks, and analyze the potential multiproduct timber in a agrosilvopastoral system. The data were from five agrosilvopastoral systems located in four counties, with different spatial arrangements (8 x 3 m, 10 x 3 m, 11 x 3 m, 12 x 3 m, 12 x 2 m 12 x 4 m), ages (5.5, 6.5 and 8 years) and genotypes (GG100, 3336, CRV 1189 and I144), for which it was scaled 122 trees-sample. They were adjusted one hypsometric model, two volumetric and four taper-considering all the data and the layering of the same by location, spatial arrangement and genotype. Then identity tests were applied to verify the viability of specific equations for each stratum. Artificial neural networks (ANN) type Multilayer Perceptron were trained using categorical input variables the spatial arrangement, location and genotypes. Continuous input variables used to generate the hipsometric estimates were the diameter at breast height - 1.30 m in height (dbh), dominant height (hd) and age. To obtain estimates of volumetric used the dbh, total height (Ht) and Age. With regard to the continuous input variables used to generate the stem taper estimates, beyond the dhb, Ht , age and height was used for each section (h). The accuracy of the methods was assessed by the square root of the mean squared error statistics, correlation between observed and estimated values, dispersion of percentage errors, and the mean absolute deviation. The equations to fit the model proposed by Campos et al. (1984), Schumacher and Hall (1933) and Garay (1979) showed greater accuracy. It was found that, as the regression models, the RNA were efficient methodologies to estimate the volume and the taper of the eucalypts tree in agroforestry systems in the Zona da Mata region, and the trees of the studied agrosilvopastoral system presented greater potential for financial return when intended for multiproduct. Keywords: agroforestry system; timber production; taper; multiproduct; eucalypt.Conselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de ViçosaFlorestas - MediçãoLevantamentos florestaisEucaliptoMadeira - ExploraçãoRedes neurais artificiaisSilviculturaEficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineiraEfficiency of artificial neural networks for estimating dendrometric variables in agroforestry systems of the Zona da Mata regioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de Engenharia FlorestalMestre em Ciência FlorestalViçosa - MG2016-07-22Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf2699353https://locus.ufv.br//bitstream/123456789/9290/1/texto%20completo.pdf903cb41519dc5d0b94dd92b741734b5cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/9290/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3511https://locus.ufv.br//bitstream/123456789/9290/3/texto%20completo.pdf.jpg94fdb4e0f4417f3b36405977c820af7dMD53123456789/92902017-01-04 22:00:21.212oai:locus.ufv.br:123456789/9290Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-01-05T01:00:21LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
dc.title.en.fl_str_mv |
Efficiency of artificial neural networks for estimating dendrometric variables in agroforestry systems of the Zona da Mata region |
title |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
spellingShingle |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira Silva, Simone Florestas - Medição Levantamentos florestais Eucalipto Madeira - Exploração Redes neurais artificiais Silvicultura |
title_short |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
title_full |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
title_fullStr |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
title_full_unstemmed |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
title_sort |
Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira |
author |
Silva, Simone |
author_facet |
Silva, Simone |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/7983850440016108 |
dc.contributor.none.fl_str_mv |
Leite, Helio Garcia |
dc.contributor.author.fl_str_mv |
Silva, Simone |
dc.contributor.advisor1.fl_str_mv |
Oliveira Neto, Sílvio Nolasco de |
contributor_str_mv |
Oliveira Neto, Sílvio Nolasco de |
dc.subject.pt-BR.fl_str_mv |
Florestas - Medição Levantamentos florestais Eucalipto Madeira - Exploração Redes neurais artificiais |
topic |
Florestas - Medição Levantamentos florestais Eucalipto Madeira - Exploração Redes neurais artificiais Silvicultura |
dc.subject.cnpq.fl_str_mv |
Silvicultura |
description |
O objetivo deste estudo foi estimar o volume e o afilamento do fuste de eucalipto em sistemas agrossilvipastoris em quatro municípios da Zona da Mata mineira, comparando modelos de regressão e redes neurais artificiais, e analisar o potencial de multiprodutos da madeira em um sistema agrossilvipastoril. Os dados foram provenientes de cinco sistemas agrossilvipastoris, localizados em quatro municípios, com diferentes arranjos espaciais (8 x 3 m, 10 x 3 m, 11 x 3 m, 12 x 3 m, 12 x 2 m e 12 x 4 m), idades (5,5; 6,5 e 8 anos) e genótipos (GG100, 3336, CRV 1189 e I144), para os quais foram cubadas 122 árvores- amostra. Foram ajustados um modelo hipsométrico, dois volumétricos e quatro de afilamento do fuste, considerando todos os dados e a estratificação dos mesmos por localidade, arranjo espacial e genótipo. Em seguida, foram aplicados testes de identidade para verificar a viabilidade de equações específicas por estrato. Redes neurais artificias (RNA) do tipo Multilayer Perceptron foram treinadas, utilizando como variáveis de entrada categóricas o arranjo espacial, a localidade e os genótipos. As variáveis de entrada contínuas utilizadas para geração das estimativas hipsométricas foram o diâmetro à altura do peito - 1,30 m de altura (dap), altura dominante (hd) e idade. Para obtenção das estimativas volumétricas utilizou-se o dap, altura total (Ht) e idade. Com relação às variáveis de entrada contínuas utilizadas na geração de estimativas do afilamento do fuste, além do dap, Ht e idade, utilizou-se a altura de cada seção (h). A precisão dos métodos foi avaliada por meio das estatísticas da raiz quadrática do erro quadrático médio, correlação entre valores observados e estimados, dispersão dos erros percentuais, e o desvio médio absoluto. As equações obtidas com ajuste do modelo proposto por Campos et al. (1984), Schumacher e Hall (1933) e Garay (1979) apresentaram maior exatidão. Constatou-se que, assim como os modelos de regressão, as RNA foram metodologias eficientes para estimar o volume e o afilamento do fuste de árvores de eucalipto em sistemas agrossilvipastoris na região da Zona da Mata mineira, e que as árvores do sistema agrossilvipastoril estudado apresentaram maior potencial de retorno financeiro quando destinadas a multiprodutos. Palavras- chave: sistema agroflorestal, produção de madeira, taper, multiprodutos, eucalipto. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-07-22 |
dc.date.accessioned.fl_str_mv |
2017-01-04T15:28:28Z |
dc.date.available.fl_str_mv |
2017-01-04T15:28:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Simone. Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira. 2016. 96f. Dissertação (Mestrado em Ciência Florestal) - Universidade Federal de Viçosa, Viçosa. 2016. |
dc.identifier.uri.fl_str_mv |
http://www.locus.ufv.br/handle/123456789/9290 |
identifier_str_mv |
SILVA, Simone. Eficiência de redes neurais artificiais para estimar variáveis dendrométricas em sistemas agrossilvipastoris na Zona da Mata mineira. 2016. 96f. Dissertação (Mestrado em Ciência Florestal) - Universidade Federal de Viçosa, Viçosa. 2016. |
url |
http://www.locus.ufv.br/handle/123456789/9290 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/9290/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/9290/2/license.txt https://locus.ufv.br//bitstream/123456789/9290/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
903cb41519dc5d0b94dd92b741734b5c 8a4605be74aa9ea9d79846c1fba20a33 94fdb4e0f4417f3b36405977c820af7d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213044097810432 |