Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods

Detalhes bibliográficos
Autor(a) principal: Caliari, Ítalo P.
Data de Publicação: 2016
Outros Autores: Barbosa, Márcio H.P., Ferreira, Sukarno O., Teófilo, Reinaldo F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.carbpol.2016.12.005
http://www.locus.ufv.br/handle/123456789/18483
Resumo: A method for estimation of sugarcane (Saccharum spp.) biomass crystallinity using near infrared spectroscopy (NIR) and partial least squares regression (PLS) as an alternative to the standard method using X-ray diffractometry (XRD) is proposed. Crystallinity was obtained using XRD from sugarcane bagasse. NIR spectra were obtained of the same material. PLS models were built using the NIR and crystallinity values. Cellulose crystallinity ranged from 50 to 81%. Two variable selection algorithms were applied to improve the predictive ability of models, i.e. (a) Ordered Predictors Selection (OPS) and (b) Genetic Algorithm. The best model, obtained with the OPS algorithm, presented values of correlation coefficient of prediction, root mean squared error of prediction and ratio of performance deviation equals to 0.92, 3.01 and 1.71, respectively. A scatter matrix among lignin, α-cellulose, hemicellulose, ash and crystallinity was built that showed that there was no correlation among these properties for the samples studied.
id UFV_0fb1cb0a57342a84f0e9c80005384c68
oai_identifier_str oai:locus.ufv.br:123456789/18483
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Caliari, Ítalo P.Barbosa, Márcio H.P.Ferreira, Sukarno O.Teófilo, Reinaldo F.2018-03-26T14:50:29Z2018-03-26T14:50:29Z2016-12-0501448617https://doi.org/10.1016/j.carbpol.2016.12.005http://www.locus.ufv.br/handle/123456789/18483A method for estimation of sugarcane (Saccharum spp.) biomass crystallinity using near infrared spectroscopy (NIR) and partial least squares regression (PLS) as an alternative to the standard method using X-ray diffractometry (XRD) is proposed. Crystallinity was obtained using XRD from sugarcane bagasse. NIR spectra were obtained of the same material. PLS models were built using the NIR and crystallinity values. Cellulose crystallinity ranged from 50 to 81%. Two variable selection algorithms were applied to improve the predictive ability of models, i.e. (a) Ordered Predictors Selection (OPS) and (b) Genetic Algorithm. The best model, obtained with the OPS algorithm, presented values of correlation coefficient of prediction, root mean squared error of prediction and ratio of performance deviation equals to 0.92, 3.01 and 1.71, respectively. A scatter matrix among lignin, α-cellulose, hemicellulose, ash and crystallinity was built that showed that there was no correlation among these properties for the samples studied.engCarbohydrate Polymersv. 158, p. 20-28, February 2017Elsevier Ltd. All rights reserved.info:eu-repo/semantics/openAccessCrystallinitySugarcanePLSNIRXRDOPSEstimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf2540830https://locus.ufv.br//bitstream/123456789/18483/1/artigo.pdffba0c7246abc62104422960726afcde8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/18483/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4668https://locus.ufv.br//bitstream/123456789/18483/3/artigo.pdf.jpg047f5ab52678dcf04ceb1c06df3fc5e6MD53123456789/184832018-03-26 23:01:17.379oai:locus.ufv.br:123456789/18483Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-03-27T02:01:17LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
title Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
spellingShingle Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
Caliari, Ítalo P.
Crystallinity
Sugarcane
PLS
NIR
XRD
OPS
title_short Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
title_full Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
title_fullStr Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
title_full_unstemmed Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
title_sort Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods
author Caliari, Ítalo P.
author_facet Caliari, Ítalo P.
Barbosa, Márcio H.P.
Ferreira, Sukarno O.
Teófilo, Reinaldo F.
author_role author
author2 Barbosa, Márcio H.P.
Ferreira, Sukarno O.
Teófilo, Reinaldo F.
author2_role author
author
author
dc.contributor.author.fl_str_mv Caliari, Ítalo P.
Barbosa, Márcio H.P.
Ferreira, Sukarno O.
Teófilo, Reinaldo F.
dc.subject.pt-BR.fl_str_mv Crystallinity
Sugarcane
PLS
NIR
XRD
OPS
topic Crystallinity
Sugarcane
PLS
NIR
XRD
OPS
description A method for estimation of sugarcane (Saccharum spp.) biomass crystallinity using near infrared spectroscopy (NIR) and partial least squares regression (PLS) as an alternative to the standard method using X-ray diffractometry (XRD) is proposed. Crystallinity was obtained using XRD from sugarcane bagasse. NIR spectra were obtained of the same material. PLS models were built using the NIR and crystallinity values. Cellulose crystallinity ranged from 50 to 81%. Two variable selection algorithms were applied to improve the predictive ability of models, i.e. (a) Ordered Predictors Selection (OPS) and (b) Genetic Algorithm. The best model, obtained with the OPS algorithm, presented values of correlation coefficient of prediction, root mean squared error of prediction and ratio of performance deviation equals to 0.92, 3.01 and 1.71, respectively. A scatter matrix among lignin, α-cellulose, hemicellulose, ash and crystallinity was built that showed that there was no correlation among these properties for the samples studied.
publishDate 2016
dc.date.issued.fl_str_mv 2016-12-05
dc.date.accessioned.fl_str_mv 2018-03-26T14:50:29Z
dc.date.available.fl_str_mv 2018-03-26T14:50:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.carbpol.2016.12.005
http://www.locus.ufv.br/handle/123456789/18483
dc.identifier.issn.none.fl_str_mv 01448617
identifier_str_mv 01448617
url https://doi.org/10.1016/j.carbpol.2016.12.005
http://www.locus.ufv.br/handle/123456789/18483
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 158, p. 20-28, February 2017
dc.rights.driver.fl_str_mv Elsevier Ltd. All rights reserved.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier Ltd. All rights reserved.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Carbohydrate Polymers
publisher.none.fl_str_mv Carbohydrate Polymers
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/18483/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/18483/2/license.txt
https://locus.ufv.br//bitstream/123456789/18483/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv fba0c7246abc62104422960726afcde8
8a4605be74aa9ea9d79846c1fba20a33
047f5ab52678dcf04ceb1c06df3fc5e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213002384408576