Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas

Detalhes bibliográficos
Autor(a) principal: Barbosa, Danilo Pereira
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/4023
Resumo: The concern in minimizing the amount of chemical products used in farmings is increasing. The use of artificial vision systems has been demonstrating a great potential for use of varied taxes of inputs, as for instance, the application herbicides only in places where the presence of harmful plant is detected. The good acting of a system developed for this purpose depends mainly of the characteristic use that they allow to differentiate patterns of harmful plants of the pattern of the cultivated species. Like this, the objective of the present work was to develop and to evaluate a characteristic for the recognition of the patterns corn plant and harmful plant. The specific objectives were: the) to identify which image, green excess or the index of vegetation of normalized green, tends to provide better classification; b) to compare the classification obtained by characteristics geoestatistics, obtained when using the characteristics of Haralick. With this purpose, were acquired to the 29 days after the emergency, period in that it is usually made the application of herbicides, nine corn images (Zea Mays L.) and of each one of the species of appraised harmful plants in this experiment: Euphorbia heterophylla L., Digitaria horizontalis Willd, Cenchrus chinatus L. Six of these images were used for the selection of the characteristic that promotes better acting in the classification. The remaining three were used for the validation of the selected characteristic. Each one of the six training images was cut out in 100 blocks of 68x68 pixels. For each one of the blocks was obtained the value of the characteristic textural geoestatistic (variogram, the madogram, cross variogram and pseudo cross variogram) and the one of Haralick (angular moment, average, variance, entropy, correlation, moment of the product, inverse moment of the difference and correlation measures). Additionally, characteristic geoestatísticos and no-geoestatísticos they were obtained considering different angles (0, 45, 90 and 135°) of relationship among pixels. Characteristic geoestatistics were, also, obtained for different distances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) of in pairs among pixels. The characteristic variograma and madograma were calculated to leave of the image green excess and GNDVI. Already the characteristic cross variogram and pseudo cross variogram were calculated with Greenness Method use in the blocks using the combinations of the bands RxG, GxB and IVxG. The characteristic of Haralick were calculated starting from the images of the green excess and GNDVI. The acting of the characteristic, proposed like this, it was evaluated using discriminate analysis. The selected characteristic were those that presented larger value for the index kappa. Additionally, new characteristic were obtained starting from combinations of the selected characteristic. These combinations, also, had appraised acting using the discriminant analysis with the objective of to identify which combination provides better classification. Later, the power of generalization of the selected combination was evaluated using the three images of each species reserved for the validation stage. The conclusions obtained regarding the objectives proposed in this research were a) the image that tended to present the best results of the index kappa was the image excess of green; b) the characteristic obtained starting from the function madograma and the one of Haralick were the ones that supplied the best results; c) the characteristic geoestatistic madograma in the 10 distances and angle 0° presented better classification results when used without combination of other characteristic; d) the characteristic geoestatísticos and the one of Haralick, when used separately didn't present such good as combined results; e) the characteristic use that consider the continuity of the pixel values, in the recognition of patterns can be a fundamental tool in the classification process.
id UFV_118d4ab36311c6d2c4474d6eaa7000d0
oai_identifier_str oai:locus.ufv.br:123456789/4023
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Barbosa, Danilo Pereirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4237661D4Pinto, Francisco de Assis de Carvalhohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784515P9Peternelli, Luiz Alexandrehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7Santos, Nerilson Terrahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2Vieira, Carlos Antonio Oliveirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728250D0Carneiro, Antônio Policarpo Souzahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8Martins Filho, Sebastiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5Ribeiro Junior, José Ivohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y62015-03-26T13:32:07Z2009-07-292015-03-26T13:32:07Z2009-02-17BARBOSA, Danilo Pereira. Evaluation of geoestatistic textural descriptor and of Haralick for the recognition of harmful plants. 2009. 102 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2009.http://locus.ufv.br/handle/123456789/4023The concern in minimizing the amount of chemical products used in farmings is increasing. The use of artificial vision systems has been demonstrating a great potential for use of varied taxes of inputs, as for instance, the application herbicides only in places where the presence of harmful plant is detected. The good acting of a system developed for this purpose depends mainly of the characteristic use that they allow to differentiate patterns of harmful plants of the pattern of the cultivated species. Like this, the objective of the present work was to develop and to evaluate a characteristic for the recognition of the patterns corn plant and harmful plant. The specific objectives were: the) to identify which image, green excess or the index of vegetation of normalized green, tends to provide better classification; b) to compare the classification obtained by characteristics geoestatistics, obtained when using the characteristics of Haralick. With this purpose, were acquired to the 29 days after the emergency, period in that it is usually made the application of herbicides, nine corn images (Zea Mays L.) and of each one of the species of appraised harmful plants in this experiment: Euphorbia heterophylla L., Digitaria horizontalis Willd, Cenchrus chinatus L. Six of these images were used for the selection of the characteristic that promotes better acting in the classification. The remaining three were used for the validation of the selected characteristic. Each one of the six training images was cut out in 100 blocks of 68x68 pixels. For each one of the blocks was obtained the value of the characteristic textural geoestatistic (variogram, the madogram, cross variogram and pseudo cross variogram) and the one of Haralick (angular moment, average, variance, entropy, correlation, moment of the product, inverse moment of the difference and correlation measures). Additionally, characteristic geoestatísticos and no-geoestatísticos they were obtained considering different angles (0, 45, 90 and 135°) of relationship among pixels. Characteristic geoestatistics were, also, obtained for different distances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) of in pairs among pixels. The characteristic variograma and madograma were calculated to leave of the image green excess and GNDVI. Already the characteristic cross variogram and pseudo cross variogram were calculated with Greenness Method use in the blocks using the combinations of the bands RxG, GxB and IVxG. The characteristic of Haralick were calculated starting from the images of the green excess and GNDVI. The acting of the characteristic, proposed like this, it was evaluated using discriminate analysis. The selected characteristic were those that presented larger value for the index kappa. Additionally, new characteristic were obtained starting from combinations of the selected characteristic. These combinations, also, had appraised acting using the discriminant analysis with the objective of to identify which combination provides better classification. Later, the power of generalization of the selected combination was evaluated using the three images of each species reserved for the validation stage. The conclusions obtained regarding the objectives proposed in this research were a) the image that tended to present the best results of the index kappa was the image excess of green; b) the characteristic obtained starting from the function madograma and the one of Haralick were the ones that supplied the best results; c) the characteristic geoestatistic madograma in the 10 distances and angle 0° presented better classification results when used without combination of other characteristic; d) the characteristic geoestatísticos and the one of Haralick, when used separately didn't present such good as combined results; e) the characteristic use that consider the continuity of the pixel values, in the recognition of patterns can be a fundamental tool in the classification process.A preocupação em minimizar a quantidade de produtos químicos utilizado em lavouras vem aumentando. O uso de sistemas de visão artificial tem demonstrado um grande potencial para o uso de taxas variadas de insumos, como por exemplo, a aplicação de herbicidas somente em locais onde é detectada a presença de planta daninha. O bom desempenho de um sistema desenvolvido para esta finalidade depende principalmente do uso de descritores que permitam diferenciar padrões de plantas daninhas do padrão da espécie cultivada. Sendo assim, objetivo geral do presente trabalho foi desenvolver e avaliar um descritor para o reconhecimento dos padrões planta de milho e planta daninha. Os objetivos específicos foram: a) identificar qual imagem, excesso de verde ou o índice de vegetação de verde normalizado, tende a proporcionar melhor classificação; b) comparar a classificação obtida por descritores geoestatísticos, com a obtida ao usar os descritores de Haralick. Com esta finalidade, foram adquiridas aos 29 dias após a emergência, período em que normalmente é feita a aplicação de herbicidas, nove imagens de milho (Zea Mays L.) e de três espécies de plantas daninhas avaliadas neste experimento: leiteira (Euphorbia heterophylla L.), capim-milhã (Digitaria horizontalis Willd) timbête (Cenchrus echinatus L.). Seis destas imagens foram utilizadas para a seleção do descritor que promove melhor desempenho na classificação. As três restantes foram utilizadas para a validação do descritor selecionado. Cada uma das seis imagens de treinamento foi recortada em 100 blocos de 68x68 pixels. Para cada um dos blocos foi obtido o valor dos descritores texturais geoestatísticos (variograma, o madograma, variograma cruzado e pseudo variograma cruzado) e os de Haralick (momento angular, média, variância, entropia, correlação, momento do produto, momento inverso da diferença e medidas de correlação). Adicionalmente, descritores geoestatísticos e não-geoestatísticos foram obtidos considerando diferentes ângulos (0, 45, 90 e 135°) de relacionamento entre pixels. Descritores geoestatísticos foram, também, obtidos para diferentes distâncias (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) de pareamento entre pixels. Os descritores variograma e madograma foram calculados partir da imagem excesso de verde e GNDVI. Já os descritores variograma cruzado e pseudo variograma cruzado foram calculados com o uso do Greenness Method nos blocos usando as combinações das bandas RxG, GxB e IVxG. Os descritores de Haralick foram calculados a partir das imagens do excesso de verde e GNDVI. O desempenho dos descritores, assim propostos, foi avaliado usando análise discriminante. Os descritores selecionados foram aqueles que apresentaram maior valor para o índice kappa. Adicionalmente, novos descritores foram obtidos a partir de combinações dos descritores selecionados. Estas combinações, também, tiveram o seu desempenho avaliado usando a análise discriminante com o objetivo de identificar qual combinação proporciona melhor desempenho na classificação. Posteriormente, o poder de generalização da combinação selecionada foi avaliado usando as três imagens de cada espécie reservadas para a etapa de validação. As conclusões obtidas com relação aos objetivos propostos nesta pesquisa foram a) a imagem que tendeu a apresentar os melhores resultados do índice kappa foi a imagem excesso de verde; b) os descritores obtidos a partir da função madograma e os de Haralick foram os que forneceram os melhores resultados; c) o descritor geoestatístico madograma nas 10 distâncias e ângulo 0° apresentou melhores resultados de classificação quando usado sem combinação de outros descritores; d) os descritores geoestatísticos e os de Haralick, quando usados isoladamente não apresentaram resultados tão bons quanto combinados; e) o uso de descritores que consideram a continuidade dos valores de pixel, no reconhecimento de padrões pode ser uma ferramenta fundamental no processo de classificação.Fundação de Amparo a Pesquisa do Estado de Minas Geraisapplication/pdfporUniversidade Federal de ViçosaMestrado em Estatística Aplicada e BiometriaUFVBREstatística Aplicada e BiometriaReconhecimento de padrãoGeoestatísticaAnálise discriminanteTexturaRecognition patternGeoestatisticsDiscriminant analysisTextureCNPQ::CIENCIAS AGRARIASAvaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhasEvaluation of geoestatistic textural descriptor and of Haralick for the recognition of harmful plantsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1250297https://locus.ufv.br//bitstream/123456789/4023/1/texto%20completo.pdf6fd0be6a8317d32468f8f7b7ff74d7efMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain150759https://locus.ufv.br//bitstream/123456789/4023/2/texto%20completo.pdf.txtd86e642e8f441d1d41d7a76ad2edb636MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3677https://locus.ufv.br//bitstream/123456789/4023/3/texto%20completo.pdf.jpg24eac89caa7759e1d94323b8306ad5a6MD53123456789/40232016-04-09 23:17:24.037oai:locus.ufv.br:123456789/4023Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:17:24LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
dc.title.alternative.eng.fl_str_mv Evaluation of geoestatistic textural descriptor and of Haralick for the recognition of harmful plants
title Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
spellingShingle Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
Barbosa, Danilo Pereira
Reconhecimento de padrão
Geoestatística
Análise discriminante
Textura
Recognition pattern
Geoestatistics
Discriminant analysis
Texture
CNPQ::CIENCIAS AGRARIAS
title_short Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
title_full Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
title_fullStr Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
title_full_unstemmed Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
title_sort Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
author Barbosa, Danilo Pereira
author_facet Barbosa, Danilo Pereira
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4237661D4
dc.contributor.author.fl_str_mv Barbosa, Danilo Pereira
dc.contributor.advisor-co1.fl_str_mv Pinto, Francisco de Assis de Carvalho
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784515P9
dc.contributor.advisor-co2.fl_str_mv Peternelli, Luiz Alexandre
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7
dc.contributor.advisor1.fl_str_mv Santos, Nerilson Terra
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2
dc.contributor.referee1.fl_str_mv Vieira, Carlos Antonio Oliveira
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728250D0
dc.contributor.referee2.fl_str_mv Carneiro, Antônio Policarpo Souza
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8
dc.contributor.referee3.fl_str_mv Martins Filho, Sebastião
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5
dc.contributor.referee4.fl_str_mv Ribeiro Junior, José Ivo
dc.contributor.referee4Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6
contributor_str_mv Pinto, Francisco de Assis de Carvalho
Peternelli, Luiz Alexandre
Santos, Nerilson Terra
Vieira, Carlos Antonio Oliveira
Carneiro, Antônio Policarpo Souza
Martins Filho, Sebastião
Ribeiro Junior, José Ivo
dc.subject.por.fl_str_mv Reconhecimento de padrão
Geoestatística
Análise discriminante
Textura
topic Reconhecimento de padrão
Geoestatística
Análise discriminante
Textura
Recognition pattern
Geoestatistics
Discriminant analysis
Texture
CNPQ::CIENCIAS AGRARIAS
dc.subject.eng.fl_str_mv Recognition pattern
Geoestatistics
Discriminant analysis
Texture
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS
description The concern in minimizing the amount of chemical products used in farmings is increasing. The use of artificial vision systems has been demonstrating a great potential for use of varied taxes of inputs, as for instance, the application herbicides only in places where the presence of harmful plant is detected. The good acting of a system developed for this purpose depends mainly of the characteristic use that they allow to differentiate patterns of harmful plants of the pattern of the cultivated species. Like this, the objective of the present work was to develop and to evaluate a characteristic for the recognition of the patterns corn plant and harmful plant. The specific objectives were: the) to identify which image, green excess or the index of vegetation of normalized green, tends to provide better classification; b) to compare the classification obtained by characteristics geoestatistics, obtained when using the characteristics of Haralick. With this purpose, were acquired to the 29 days after the emergency, period in that it is usually made the application of herbicides, nine corn images (Zea Mays L.) and of each one of the species of appraised harmful plants in this experiment: Euphorbia heterophylla L., Digitaria horizontalis Willd, Cenchrus chinatus L. Six of these images were used for the selection of the characteristic that promotes better acting in the classification. The remaining three were used for the validation of the selected characteristic. Each one of the six training images was cut out in 100 blocks of 68x68 pixels. For each one of the blocks was obtained the value of the characteristic textural geoestatistic (variogram, the madogram, cross variogram and pseudo cross variogram) and the one of Haralick (angular moment, average, variance, entropy, correlation, moment of the product, inverse moment of the difference and correlation measures). Additionally, characteristic geoestatísticos and no-geoestatísticos they were obtained considering different angles (0, 45, 90 and 135°) of relationship among pixels. Characteristic geoestatistics were, also, obtained for different distances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) of in pairs among pixels. The characteristic variograma and madograma were calculated to leave of the image green excess and GNDVI. Already the characteristic cross variogram and pseudo cross variogram were calculated with Greenness Method use in the blocks using the combinations of the bands RxG, GxB and IVxG. The characteristic of Haralick were calculated starting from the images of the green excess and GNDVI. The acting of the characteristic, proposed like this, it was evaluated using discriminate analysis. The selected characteristic were those that presented larger value for the index kappa. Additionally, new characteristic were obtained starting from combinations of the selected characteristic. These combinations, also, had appraised acting using the discriminant analysis with the objective of to identify which combination provides better classification. Later, the power of generalization of the selected combination was evaluated using the three images of each species reserved for the validation stage. The conclusions obtained regarding the objectives proposed in this research were a) the image that tended to present the best results of the index kappa was the image excess of green; b) the characteristic obtained starting from the function madograma and the one of Haralick were the ones that supplied the best results; c) the characteristic geoestatistic madograma in the 10 distances and angle 0° presented better classification results when used without combination of other characteristic; d) the characteristic geoestatísticos and the one of Haralick, when used separately didn't present such good as combined results; e) the characteristic use that consider the continuity of the pixel values, in the recognition of patterns can be a fundamental tool in the classification process.
publishDate 2009
dc.date.available.fl_str_mv 2009-07-29
2015-03-26T13:32:07Z
dc.date.issued.fl_str_mv 2009-02-17
dc.date.accessioned.fl_str_mv 2015-03-26T13:32:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARBOSA, Danilo Pereira. Evaluation of geoestatistic textural descriptor and of Haralick for the recognition of harmful plants. 2009. 102 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2009.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/4023
identifier_str_mv BARBOSA, Danilo Pereira. Evaluation of geoestatistic textural descriptor and of Haralick for the recognition of harmful plants. 2009. 102 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2009.
url http://locus.ufv.br/handle/123456789/4023
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Estatística Aplicada e Biometria
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/4023/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/4023/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/4023/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 6fd0be6a8317d32468f8f7b7ff74d7ef
d86e642e8f441d1d41d7a76ad2edb636
24eac89caa7759e1d94323b8306ad5a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212891607597056