Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1007/s00253-012-4621-z http://www.locus.ufv.br/handle/123456789/23256 |
Resumo: | Three probiotic Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus delbrueckii, were tested for their ability to assimilate and metabolize glycerol. Biodiesel-derived glycerol was used as the main carbon and energy source in batch microaerobic growth. Here, we show that the tested strains were able to assimilate glycerol, consuming between 38 and 48 % in approximately 24 h. L. acidophilus and L. delbrueckii showed a similar growth, higher than L. plantarum. The highest biomass reached was 2.11 g L−1 for L. acidophilus, with a cell mass yield (Y X/S) of 0.37 g g−1. L. delbrueckii and L. plantarum reached a biomass of 2.06 and 1.36 g L−1. All strains catabolize glycerol mainly through glycerol kinase (EC 2.7.1.30). For these lactobacillus species, kinetic parameters for glycerol kinase showed Michaelis–Menten constant (K m) ranging from 1.2 to 3.8 mM. The specific activities for glycerol kinase in these strains were in the range of 0.18 to 0.58 U mg protein−1, with L. acidophilus ATCC 4356 showing the maximum specific activity after 24 h of cultivation. Glycerol dehydrogenase activity was also detected in all strains studied but only for the reduction of glyceraldehyde with NADPH (K m for DL-glyceraldehyde ranging from 12.8 to 32.3 mM). This enzyme shows a very low oxidative activity with glycerol and NADP+ and, most likely, under physiological conditions, the oxidative reaction does not occur, supporting the assumption that the main metabolic flux concerning glycerol metabolism is through the glycerol kinase pathway. |
id |
UFV_155d31236747da56974eed8197bcc883 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/23256 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Mancilha, Ismael Maciel deFreire, Ana de PoncesFelipe, Maria das Graças de AlmeidaFerreira, António E. N.Cordeiro, CarlosDuarte, Luis C.Silva, Marta Luís C. SousaRivaldi, Juan Daniel2019-01-30T16:10:59Z2019-01-30T16:10:59Z2013-021432-0614https://doi.org/10.1007/s00253-012-4621-zhttp://www.locus.ufv.br/handle/123456789/23256Three probiotic Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus delbrueckii, were tested for their ability to assimilate and metabolize glycerol. Biodiesel-derived glycerol was used as the main carbon and energy source in batch microaerobic growth. Here, we show that the tested strains were able to assimilate glycerol, consuming between 38 and 48 % in approximately 24 h. L. acidophilus and L. delbrueckii showed a similar growth, higher than L. plantarum. The highest biomass reached was 2.11 g L−1 for L. acidophilus, with a cell mass yield (Y X/S) of 0.37 g g−1. L. delbrueckii and L. plantarum reached a biomass of 2.06 and 1.36 g L−1. All strains catabolize glycerol mainly through glycerol kinase (EC 2.7.1.30). For these lactobacillus species, kinetic parameters for glycerol kinase showed Michaelis–Menten constant (K m) ranging from 1.2 to 3.8 mM. The specific activities for glycerol kinase in these strains were in the range of 0.18 to 0.58 U mg protein−1, with L. acidophilus ATCC 4356 showing the maximum specific activity after 24 h of cultivation. Glycerol dehydrogenase activity was also detected in all strains studied but only for the reduction of glyceraldehyde with NADPH (K m for DL-glyceraldehyde ranging from 12.8 to 32.3 mM). This enzyme shows a very low oxidative activity with glycerol and NADP+ and, most likely, under physiological conditions, the oxidative reaction does not occur, supporting the assumption that the main metabolic flux concerning glycerol metabolism is through the glycerol kinase pathway.engApplied Microbiology and BiotechnologyVolume 97, Issue 4, Pages 1735–1743, February 2013Springer-Verlaginfo:eu-repo/semantics/openAccessBiodiesel-derived glycerolGlycerol kinaseGlycerol dehydrogenaseLactobacillusEnzyme kineticsBiomass productionMetabolism of biodiesel-derived glycerol in probiotic Lactobacillus strainsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf274439https://locus.ufv.br//bitstream/123456789/23256/1/artigo.pdfc2e01bb8235bf2500467778492dd859bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23256/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/232562019-01-30 13:16:34.479oai:locus.ufv.br:123456789/23256Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-01-30T16:16:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
title |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
spellingShingle |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains Mancilha, Ismael Maciel de Biodiesel-derived glycerol Glycerol kinase Glycerol dehydrogenase Lactobacillus Enzyme kinetics Biomass production |
title_short |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
title_full |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
title_fullStr |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
title_full_unstemmed |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
title_sort |
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains |
author |
Mancilha, Ismael Maciel de |
author_facet |
Mancilha, Ismael Maciel de Freire, Ana de Ponces Felipe, Maria das Graças de Almeida Ferreira, António E. N. Cordeiro, Carlos Duarte, Luis C. Silva, Marta Luís C. Sousa Rivaldi, Juan Daniel |
author_role |
author |
author2 |
Freire, Ana de Ponces Felipe, Maria das Graças de Almeida Ferreira, António E. N. Cordeiro, Carlos Duarte, Luis C. Silva, Marta Luís C. Sousa Rivaldi, Juan Daniel |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Mancilha, Ismael Maciel de Freire, Ana de Ponces Felipe, Maria das Graças de Almeida Ferreira, António E. N. Cordeiro, Carlos Duarte, Luis C. Silva, Marta Luís C. Sousa Rivaldi, Juan Daniel |
dc.subject.pt-BR.fl_str_mv |
Biodiesel-derived glycerol Glycerol kinase Glycerol dehydrogenase Lactobacillus Enzyme kinetics Biomass production |
topic |
Biodiesel-derived glycerol Glycerol kinase Glycerol dehydrogenase Lactobacillus Enzyme kinetics Biomass production |
description |
Three probiotic Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus delbrueckii, were tested for their ability to assimilate and metabolize glycerol. Biodiesel-derived glycerol was used as the main carbon and energy source in batch microaerobic growth. Here, we show that the tested strains were able to assimilate glycerol, consuming between 38 and 48 % in approximately 24 h. L. acidophilus and L. delbrueckii showed a similar growth, higher than L. plantarum. The highest biomass reached was 2.11 g L−1 for L. acidophilus, with a cell mass yield (Y X/S) of 0.37 g g−1. L. delbrueckii and L. plantarum reached a biomass of 2.06 and 1.36 g L−1. All strains catabolize glycerol mainly through glycerol kinase (EC 2.7.1.30). For these lactobacillus species, kinetic parameters for glycerol kinase showed Michaelis–Menten constant (K m) ranging from 1.2 to 3.8 mM. The specific activities for glycerol kinase in these strains were in the range of 0.18 to 0.58 U mg protein−1, with L. acidophilus ATCC 4356 showing the maximum specific activity after 24 h of cultivation. Glycerol dehydrogenase activity was also detected in all strains studied but only for the reduction of glyceraldehyde with NADPH (K m for DL-glyceraldehyde ranging from 12.8 to 32.3 mM). This enzyme shows a very low oxidative activity with glycerol and NADP+ and, most likely, under physiological conditions, the oxidative reaction does not occur, supporting the assumption that the main metabolic flux concerning glycerol metabolism is through the glycerol kinase pathway. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-02 |
dc.date.accessioned.fl_str_mv |
2019-01-30T16:10:59Z |
dc.date.available.fl_str_mv |
2019-01-30T16:10:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1007/s00253-012-4621-z http://www.locus.ufv.br/handle/123456789/23256 |
dc.identifier.issn.none.fl_str_mv |
1432-0614 |
identifier_str_mv |
1432-0614 |
url |
https://doi.org/10.1007/s00253-012-4621-z http://www.locus.ufv.br/handle/123456789/23256 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 97, Issue 4, Pages 1735–1743, February 2013 |
dc.rights.driver.fl_str_mv |
Springer-Verlag info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Springer-Verlag |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Applied Microbiology and Biotechnology |
publisher.none.fl_str_mv |
Applied Microbiology and Biotechnology |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/23256/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/23256/2/license.txt |
bitstream.checksum.fl_str_mv |
c2e01bb8235bf2500467778492dd859b 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212863502614528 |