Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1590/s1678-3921.pab2019.v54.00078 https://locus.ufv.br//handle/123456789/26466 |
Resumo: | O objetivo deste trabalho foi comparar métodos para obtenção do índice de sítio para povoamentos de eucalipto (Eucalyptus spp.), bem como avaliar seus impactos na estabilidade desse índice em bases de dados com e sem a presença de “outliers”. Foram testados três métodos, com uso de regressão linear, regressão quantílica e rede neural artificial. Foram utilizadas 22 parcelas permanentes de inventário florestal contínuo, medidas em árvores com idade de 23 a 83 meses. Os outliers foram identificados com uso de gráfico de boxplot. A rede neural artificial proporcionou melhores resultados que as regressões linear e quantílica, tanto para as estimativas de altura dominante quanto do índice de sítio. A estabilidade da classificação do índice de sítio obtida pela rede neural artificial também foi melhor que a obtida com os outros métodos, independentemente da presença ou da ausência de outliers na base de dados. Isso indica que a rede neural artificial é uma técnica sólida de modelagem na presença de outliers. Quando a causa da presença de outliers na base de dados não é conhecida, eles podem ser mantidos nela se técnicas como as de redes neurais artificiais ou de regressão quantílica forem utilizadas. |
id |
UFV_442480641c88f1870f9357137e918a30 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/26466 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Araújo Júnior, Carlos AlbertoSouza, Pábulo Diogo deAssis, Adriana Leandra deCabacinha, Christian DiasLeite, Helio GarciaSoares, Carlos Pedro BoechatSilva, Antonilmar Araújo Lopes daCastro, Renato Vinícius Oliveira2019-08-05T14:53:33Z2019-08-05T14:53:33Z20191678-3921http://dx.doi.org/10.1590/s1678-3921.pab2019.v54.00078https://locus.ufv.br//handle/123456789/26466O objetivo deste trabalho foi comparar métodos para obtenção do índice de sítio para povoamentos de eucalipto (Eucalyptus spp.), bem como avaliar seus impactos na estabilidade desse índice em bases de dados com e sem a presença de “outliers”. Foram testados três métodos, com uso de regressão linear, regressão quantílica e rede neural artificial. Foram utilizadas 22 parcelas permanentes de inventário florestal contínuo, medidas em árvores com idade de 23 a 83 meses. Os outliers foram identificados com uso de gráfico de boxplot. A rede neural artificial proporcionou melhores resultados que as regressões linear e quantílica, tanto para as estimativas de altura dominante quanto do índice de sítio. A estabilidade da classificação do índice de sítio obtida pela rede neural artificial também foi melhor que a obtida com os outros métodos, independentemente da presença ou da ausência de outliers na base de dados. Isso indica que a rede neural artificial é uma técnica sólida de modelagem na presença de outliers. Quando a causa da presença de outliers na base de dados não é conhecida, eles podem ser mantidos nela se técnicas como as de redes neurais artificiais ou de regressão quantílica forem utilizadas.The objective of this work was to compare methods of obtaining the site index for eucalyptus (Eucalyptus spp.) stands, as well as to evaluate their impact on the stability of this index in databases with and without outliers. Three methods were tested, using linear regression, quantile regression, and artificial neural network. Twenty-two permanent plots from a continuous forest inventory were used, measured in trees with ages from 23 to 83 months. The outliers were identified using a boxplot graphic. The artificial neural network showed better results than the linear and quantile regressions, both for dominant height and site index estimates. The stability obtained for the site index classification by the artificial neural network was also better than the one obtained by the other methods, regardless of the presence or the absence of outliers in the database. This shows that the artificial neural network is a solid modelling technique in the presence of outliers. When the cause of the presence of outliers in the database is not known, they can be kept in it if techniques as artificial neural networks or quantile regression are used.engPesquisa Agropecuária Brasileirav. 54, e00078, p. 1- 8, 2019EucalyptusArtificial intelligenceDominant heightForest inventoryForest modellingNon- sampling errorsInteligência artificialAltura dominanteInventário florestalModelagem florestalErros não amostraisArtificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf636338https://locus.ufv.br//bitstream/123456789/26466/1/artigo.pdf9e92c519590427ca63369b402d769c83MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/26466/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/264662019-08-05 11:54:35.141oai:locus.ufv.br:123456789/26466Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-08-05T14:54:35LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
title |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
spellingShingle |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers Araújo Júnior, Carlos Alberto Eucalyptus Artificial intelligence Dominant height Forest inventory Forest modelling Non- sampling errors Inteligência artificial Altura dominante Inventário florestal Modelagem florestal Erros não amostrais |
title_short |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
title_full |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
title_fullStr |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
title_full_unstemmed |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
title_sort |
Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers |
author |
Araújo Júnior, Carlos Alberto |
author_facet |
Araújo Júnior, Carlos Alberto Souza, Pábulo Diogo de Assis, Adriana Leandra de Cabacinha, Christian Dias Leite, Helio Garcia Soares, Carlos Pedro Boechat Silva, Antonilmar Araújo Lopes da Castro, Renato Vinícius Oliveira |
author_role |
author |
author2 |
Souza, Pábulo Diogo de Assis, Adriana Leandra de Cabacinha, Christian Dias Leite, Helio Garcia Soares, Carlos Pedro Boechat Silva, Antonilmar Araújo Lopes da Castro, Renato Vinícius Oliveira |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Araújo Júnior, Carlos Alberto Souza, Pábulo Diogo de Assis, Adriana Leandra de Cabacinha, Christian Dias Leite, Helio Garcia Soares, Carlos Pedro Boechat Silva, Antonilmar Araújo Lopes da Castro, Renato Vinícius Oliveira |
dc.subject.pt-BR.fl_str_mv |
Eucalyptus Artificial intelligence Dominant height Forest inventory Forest modelling Non- sampling errors Inteligência artificial Altura dominante Inventário florestal Modelagem florestal Erros não amostrais |
topic |
Eucalyptus Artificial intelligence Dominant height Forest inventory Forest modelling Non- sampling errors Inteligência artificial Altura dominante Inventário florestal Modelagem florestal Erros não amostrais |
description |
O objetivo deste trabalho foi comparar métodos para obtenção do índice de sítio para povoamentos de eucalipto (Eucalyptus spp.), bem como avaliar seus impactos na estabilidade desse índice em bases de dados com e sem a presença de “outliers”. Foram testados três métodos, com uso de regressão linear, regressão quantílica e rede neural artificial. Foram utilizadas 22 parcelas permanentes de inventário florestal contínuo, medidas em árvores com idade de 23 a 83 meses. Os outliers foram identificados com uso de gráfico de boxplot. A rede neural artificial proporcionou melhores resultados que as regressões linear e quantílica, tanto para as estimativas de altura dominante quanto do índice de sítio. A estabilidade da classificação do índice de sítio obtida pela rede neural artificial também foi melhor que a obtida com os outros métodos, independentemente da presença ou da ausência de outliers na base de dados. Isso indica que a rede neural artificial é uma técnica sólida de modelagem na presença de outliers. Quando a causa da presença de outliers na base de dados não é conhecida, eles podem ser mantidos nela se técnicas como as de redes neurais artificiais ou de regressão quantílica forem utilizadas. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-08-05T14:53:33Z |
dc.date.available.fl_str_mv |
2019-08-05T14:53:33Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/s1678-3921.pab2019.v54.00078 https://locus.ufv.br//handle/123456789/26466 |
dc.identifier.issn.none.fl_str_mv |
1678-3921 |
identifier_str_mv |
1678-3921 |
url |
http://dx.doi.org/10.1590/s1678-3921.pab2019.v54.00078 https://locus.ufv.br//handle/123456789/26466 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 54, e00078, p. 1- 8, 2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/26466/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/26466/2/license.txt |
bitstream.checksum.fl_str_mv |
9e92c519590427ca63369b402d769c83 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213058021851136 |