Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers

Detalhes bibliográficos
Autor(a) principal: Araújo Júnior, Carlos Alberto
Data de Publicação: 2019
Outros Autores: Souza, Pábulo Diogo de, Assis, Adriana Leandra de, Cabacinha, Christian Dias, Leite, Helio Garcia, Soares, Carlos Pedro Boechat, Silva, Antonilmar Araújo Lopes da, Castro, Renato Vinícius Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/26491
Resumo: The objective of this work was to compare methods of obtaining the site index for eucalyptus (Eucalyptus spp.) stands, as well as to evaluate their impact on the stability of this index in databases with and without outliers. Three methods were tested, using linear regression, quantile regression, and artificial neural network. Twenty-two permanent plots from a continuous forest inventory were used, measured in trees with ages from 23 to 83 months. The outliers were identified using a boxplot graphic. The artificial neural network showed better results than the linear and quantile regressions, both for dominant height and site index estimates. The stability obtained for the site index classification by the artificial neural network was also better than the one obtained by the other methods, regardless of the presence or the absence of outliers in the database. This shows that the artificial neural network is a solid modelling technique in the presence of outliers. When the cause of the presence of outliers in the database is not known, they can be kept in it if techniques as artificial neural networks or quantile regression are used.
id EMBRAPA-4_35e1f711bda22f78a535bbd8e8c9ba53
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/26491
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliersRedes neurais artificiais, regressão quantílica e regressão linear para predição do índice de sítio na presença de “outliers”Eucalyptus; artificial intelligence; dominant height; forest inventory; forest modelling; non-sampling errorsEucalyptus; inteligência artificial; altura dominante; inventário florestal; modelagem florestal; erros não amostraisThe objective of this work was to compare methods of obtaining the site index for eucalyptus (Eucalyptus spp.) stands, as well as to evaluate their impact on the stability of this index in databases with and without outliers. Three methods were tested, using linear regression, quantile regression, and artificial neural network. Twenty-two permanent plots from a continuous forest inventory were used, measured in trees with ages from 23 to 83 months. The outliers were identified using a boxplot graphic. The artificial neural network showed better results than the linear and quantile regressions, both for dominant height and site index estimates. The stability obtained for the site index classification by the artificial neural network was also better than the one obtained by the other methods, regardless of the presence or the absence of outliers in the database. This shows that the artificial neural network is a solid modelling technique in the presence of outliers. When the cause of the presence of outliers in the database is not known, they can be kept in it if techniques as artificial neural networks or quantile regression are used.O objetivo deste trabalho foi comparar métodos para obtenção do índice de sítio para povoamentos de eucalipto (Eucalyptus spp.), bem como avaliar seus impactos na estabilidade desse índice em bases de dados com e sem a presença de “outliers”. Foram testados três métodos, com uso de regressão linear, regressão quantílica e rede neural artificial. Foram utilizadas 22 parcelas permanentes de inventário florestal contínuo, medidas em árvores com idade de 23 a 83 meses. Os outliers foram identificados com uso de gráfico de boxplot. A rede neural artificial proporcionou melhores resultados que as regressões linear e quantílica, tanto para as estimativas de altura dominante quanto do índice de sítio. A estabilidade da classificação do índice de sítio obtida pela rede neural artificial também foi melhor que a obtida com os outros métodos, independentemente da presença ou da ausência de outliers na base de dados. Isso indica que a rede neural artificial é uma técnica sólida de modelagem na presença de outliers. Quando a causa da presença de outliers na base de dados não é conhecida, eles podem ser mantidos nela se técnicas como as de redes neurais artificiais ou de regressão quantílica forem utilizadas.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraAraújo Júnior, Carlos AlbertoSouza, Pábulo Diogo deAssis, Adriana Leandra deCabacinha, Christian DiasLeite, Helio GarciaSoares, Carlos Pedro BoechatSilva, Antonilmar Araújo Lopes daCastro, Renato Vinícius Oliveira2019-05-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/26491Pesquisa Agropecuaria Brasileira; V.54, Jan./Dec., 2019: Publicação contínua em volume anual; e00078Pesquisa Agropecuária Brasileira; V.54, Jan./Dec., 2019: Publicação contínua em volume anual; e000781678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/26491/14435Direitos autorais 2019 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2019-12-11T14:17:48Zoai:ojs.seer.sct.embrapa.br:article/26491Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2019-12-11T14:17:48Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
Redes neurais artificiais, regressão quantílica e regressão linear para predição do índice de sítio na presença de “outliers”
title Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
spellingShingle Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
Araújo Júnior, Carlos Alberto
Eucalyptus; artificial intelligence; dominant height; forest inventory; forest modelling; non-sampling errors
Eucalyptus; inteligência artificial; altura dominante; inventário florestal; modelagem florestal; erros não amostrais
title_short Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
title_full Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
title_fullStr Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
title_full_unstemmed Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
title_sort Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers
author Araújo Júnior, Carlos Alberto
author_facet Araújo Júnior, Carlos Alberto
Souza, Pábulo Diogo de
Assis, Adriana Leandra de
Cabacinha, Christian Dias
Leite, Helio Garcia
Soares, Carlos Pedro Boechat
Silva, Antonilmar Araújo Lopes da
Castro, Renato Vinícius Oliveira
author_role author
author2 Souza, Pábulo Diogo de
Assis, Adriana Leandra de
Cabacinha, Christian Dias
Leite, Helio Garcia
Soares, Carlos Pedro Boechat
Silva, Antonilmar Araújo Lopes da
Castro, Renato Vinícius Oliveira
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Araújo Júnior, Carlos Alberto
Souza, Pábulo Diogo de
Assis, Adriana Leandra de
Cabacinha, Christian Dias
Leite, Helio Garcia
Soares, Carlos Pedro Boechat
Silva, Antonilmar Araújo Lopes da
Castro, Renato Vinícius Oliveira
dc.subject.por.fl_str_mv Eucalyptus; artificial intelligence; dominant height; forest inventory; forest modelling; non-sampling errors
Eucalyptus; inteligência artificial; altura dominante; inventário florestal; modelagem florestal; erros não amostrais
topic Eucalyptus; artificial intelligence; dominant height; forest inventory; forest modelling; non-sampling errors
Eucalyptus; inteligência artificial; altura dominante; inventário florestal; modelagem florestal; erros não amostrais
description The objective of this work was to compare methods of obtaining the site index for eucalyptus (Eucalyptus spp.) stands, as well as to evaluate their impact on the stability of this index in databases with and without outliers. Three methods were tested, using linear regression, quantile regression, and artificial neural network. Twenty-two permanent plots from a continuous forest inventory were used, measured in trees with ages from 23 to 83 months. The outliers were identified using a boxplot graphic. The artificial neural network showed better results than the linear and quantile regressions, both for dominant height and site index estimates. The stability obtained for the site index classification by the artificial neural network was also better than the one obtained by the other methods, regardless of the presence or the absence of outliers in the database. This shows that the artificial neural network is a solid modelling technique in the presence of outliers. When the cause of the presence of outliers in the database is not known, they can be kept in it if techniques as artificial neural networks or quantile regression are used.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-20
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/26491
url https://seer.sct.embrapa.br/index.php/pab/article/view/26491
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/26491/14435
dc.rights.driver.fl_str_mv Direitos autorais 2019 Pesquisa Agropecuária Brasileira
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2019 Pesquisa Agropecuária Brasileira
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; V.54, Jan./Dec., 2019: Publicação contínua em volume anual; e00078
Pesquisa Agropecuária Brasileira; V.54, Jan./Dec., 2019: Publicação contínua em volume anual; e00078
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416701061103616