Uma proposta para a construção de gráficos de controle por meio de componentes principais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://www.locus.ufv.br/handle/123456789/6292 |
Resumo: | Idealizados inicialmente por Shewhart, os gráficos de controle são ferramentas utilizadas para o monitoramento de processos. Quando o objetivo é controlar várias características de um mesmo processo, é recomendável a aplicação dos gráficos de controle multivariados, ou seja, gráficos que monitorem todas essas características simultaneamente. O objetivo deste trabalho foi elaborar uma proposta de um gráfico de controle multivariado construído por meio de componentes principais, sendo esta uma técnica de análise multivariada que reduz a dimensionalidade dos dados. Os componentes principais são indicados para o controle estatístico de processos multivariados que envolvam um conjunto de dados com grande número de variáveis correlacionadas. Para tanto, foram analisados 20 cenários compostos, cada um, por mil pares de valores simulados para as duas variáveis-resposta correlacionadas com as seguintes correlações: 0,1; 0,3; 0,5; 0,7 e 0,9. Em cinco dos vinte cenários avaliados, o processo encontrava-se sob controle estatístico. Nos demais quinze cenários, o processo se encontrava fora de controle estatístico, dos quais, cinco apresentavam deslocamento na média de controle, em outros cinco os processos apresentaram aumento no desvio-padrão de controle e, por fim, os cinco restantes cenários apresentaram alterações na média de controle e no desvio-padrão de controle, simultaneamente. Para o total dos vinte cenários, foram construídos gráficos de controle empregando a matriz de variâncias e covariâncias (sΣ), onde os 2 elementos são as variâncias de controle ( σ 01 e σ 02 ) e as covariâncias estipuladas para o estudo, a matriz de correlações (ρ), onde os elementos são obtidos a partir da matriz de variâncias e covariâncias (Σ) e, por último, a matriz de coeficientes de variação (Σ*), realizando a transformação dos dados. Nesta transformação, os dados, após serem padronizados com média zero e variância um, têm suas variâncias ponderadas pelos respectivos coeficientes de variação (CVs). Em todas as três propostas, as probabilidades dos alarmes falsos obtidas foram constantes e iguais ao valor teórico esperado de 0,0027. As probabilidades dos alarmes verdadeiros foram baixas em todos os casos. A matriz Σ mostrou-se superior às demais nos cenários onde ocorreu o deslocamento da média e no cenário onde ocorreu o deslocamento da média e o aumento da variabilidade, simultaneamente. Já no cenário onde ocorreu somente o aumento da variabilidade, as matrizes Σ e Σ* mostraram-se exatamente iguais. As correlações existentes entre as variáveis-resposta não influenciaram nas probabilidades dos alarmes falsos e verdadeiros. Assim, quando o objetivo do controle for apontar pequenos desvios na média de controle ou pequenos aumentos na variabilidade, nenhuma das três propostas são indicadas, pois não são poderosas para apontar pequenas oscilações do processo. Uma alternativa para aumentar o poder no apontamento destas pequenas oscilações é plotar esta nova variável criada em outros gráficos de controle, como EWMA e CUSUM, por exemplo. Esta nova variável é uma combinação das variáveis-resposta e pode ser plotada em outros gráficos univariados. |
id |
UFV_4d53c2136dde4710ab6772791381da68 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/6292 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Nascimento, Ana Carolina CampanaNascimento, MoysésManuli, Rômulo Césarhttp://lattes.cnpq.br/1315697041807130Ribeiro Júnior, José Ivo2015-10-16T14:54:34Z2015-10-16T14:54:34Z2015-02-24MANULI, Rômulo César. Uma proposta para a construção de gráficos de controle por meio de componentes principais. 2015. 69 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.http://www.locus.ufv.br/handle/123456789/6292Idealizados inicialmente por Shewhart, os gráficos de controle são ferramentas utilizadas para o monitoramento de processos. Quando o objetivo é controlar várias características de um mesmo processo, é recomendável a aplicação dos gráficos de controle multivariados, ou seja, gráficos que monitorem todas essas características simultaneamente. O objetivo deste trabalho foi elaborar uma proposta de um gráfico de controle multivariado construído por meio de componentes principais, sendo esta uma técnica de análise multivariada que reduz a dimensionalidade dos dados. Os componentes principais são indicados para o controle estatístico de processos multivariados que envolvam um conjunto de dados com grande número de variáveis correlacionadas. Para tanto, foram analisados 20 cenários compostos, cada um, por mil pares de valores simulados para as duas variáveis-resposta correlacionadas com as seguintes correlações: 0,1; 0,3; 0,5; 0,7 e 0,9. Em cinco dos vinte cenários avaliados, o processo encontrava-se sob controle estatístico. Nos demais quinze cenários, o processo se encontrava fora de controle estatístico, dos quais, cinco apresentavam deslocamento na média de controle, em outros cinco os processos apresentaram aumento no desvio-padrão de controle e, por fim, os cinco restantes cenários apresentaram alterações na média de controle e no desvio-padrão de controle, simultaneamente. Para o total dos vinte cenários, foram construídos gráficos de controle empregando a matriz de variâncias e covariâncias (sΣ), onde os 2 elementos são as variâncias de controle ( σ 01 e σ 02 ) e as covariâncias estipuladas para o estudo, a matriz de correlações (ρ), onde os elementos são obtidos a partir da matriz de variâncias e covariâncias (Σ) e, por último, a matriz de coeficientes de variação (Σ*), realizando a transformação dos dados. Nesta transformação, os dados, após serem padronizados com média zero e variância um, têm suas variâncias ponderadas pelos respectivos coeficientes de variação (CVs). Em todas as três propostas, as probabilidades dos alarmes falsos obtidas foram constantes e iguais ao valor teórico esperado de 0,0027. As probabilidades dos alarmes verdadeiros foram baixas em todos os casos. A matriz Σ mostrou-se superior às demais nos cenários onde ocorreu o deslocamento da média e no cenário onde ocorreu o deslocamento da média e o aumento da variabilidade, simultaneamente. Já no cenário onde ocorreu somente o aumento da variabilidade, as matrizes Σ e Σ* mostraram-se exatamente iguais. As correlações existentes entre as variáveis-resposta não influenciaram nas probabilidades dos alarmes falsos e verdadeiros. Assim, quando o objetivo do controle for apontar pequenos desvios na média de controle ou pequenos aumentos na variabilidade, nenhuma das três propostas são indicadas, pois não são poderosas para apontar pequenas oscilações do processo. Uma alternativa para aumentar o poder no apontamento destas pequenas oscilações é plotar esta nova variável criada em outros gráficos de controle, como EWMA e CUSUM, por exemplo. Esta nova variável é uma combinação das variáveis-resposta e pode ser plotada em outros gráficos univariados.When tools used for the monitoring of processes were idealized initially by Shewhart, the printers of healthy control. When the objective is to control several characteristics of the same process, there is recommendable the application of the multivaried printers of control, in other words, graphic what monitor all these characteristics simultaneously. The objective of this work prepared a proposal of a printer of multivaried control built through principal components, when there is this a technique of multivaried analysis that reduces the dimensionalidade of the data. The principal components are indicated for the statistical control of multivaried processes that wrap a set of data with great number of correlated variables. For so much, 20 serious sceneries were analysed, each one, by thousand couples of values when two simulated for variable-answer correlated with the next correlations: 0,1; 0,3; 0,5; 0,7 and 0,9.In five of twenty evaluated sceneries, the process was under statistical control. In too many fifteen sceneries, the process was out of statistical control, of which, five were presenting dislocation on the average of control, in other five the processes presented increase in the diversion-standard of control and, finally, the remaining five sceneries presented alterations on the average of control and in the diversion-standard of control, simultaneously. For the total of twenty sceneries printers of control were built employing to womb of variances and covariances ( Σ ), 2 where the elements are the variances of control ( σ 01 e σ 02 ) and the covariances stipulated for the study, the womb of correlations ( ρ ), where the elements are obtained from the womb of variances and covariances ( Σ ) and, for last, the womb of coefficients of variation ( Σ* ), carrying out the transformation of the data. In this transformation, after they were standardized by average I reduce the data to zero and variance one, they have his variance considered by the respective coefficients of variation (CVs). In all three proposals false alarms probabilities obtained were constant and equal to the expected theoretical value of 0,0027. The probabilities of true alarms were low in all cases. The matrix Σ was superior to the other in scenarios where there was the average displacement and displacement occurred in the scenario where the average and increased variability, simultaneously. In the scenario where only occurred the increased variability, matrices Σ and Σ* proved to be exactly alike. The existent correlations between the variable-answer did not influence the probabilities of the false and true alarms. So, when the objective of the control will be going to point to small diversions on the average of control or small increases in the variability, none of three proposals are indicated, since are not powerful to point to small oscillations of the process. An alternative to increase the power in the note of these small oscillations is to represent this new variable created in other printers of control, like EWMA and CUSUM, for example. This new variable is a combination of the variable-answer and it can be represented in other printers univarieds.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaEstatística matemáticaAnálise multivariadaEstatísticas - Métodos gráficosControle de processosCiências AgráriasUma proposta para a construção de gráficos de controle por meio de componentes principaisUsing principal component for the construction of control chartsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de EstatísticaMestre em Estatística Aplicada e BiometriaViçosa - MG2015-02-24Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf3589875https://locus.ufv.br//bitstream/123456789/6292/1/texto%20completo.pdfef765e0f1c0cddd70cfd9e607ad0bc2eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/6292/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain123777https://locus.ufv.br//bitstream/123456789/6292/3/texto%20completo.pdf.txt0235c2028936a23574f81b230b1aa452MD53THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3688https://locus.ufv.br//bitstream/123456789/6292/4/texto%20completo.pdf.jpg4d63fe950bcc2639c1dd8918249847cfMD54123456789/62922016-04-12 23:04:30.339oai:locus.ufv.br:123456789/6292Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-13T02:04:30LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
dc.title.en.fl_str_mv |
Using principal component for the construction of control charts |
title |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
spellingShingle |
Uma proposta para a construção de gráficos de controle por meio de componentes principais Manuli, Rômulo César Estatística matemática Análise multivariada Estatísticas - Métodos gráficos Controle de processos Ciências Agrárias |
title_short |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
title_full |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
title_fullStr |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
title_full_unstemmed |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
title_sort |
Uma proposta para a construção de gráficos de controle por meio de componentes principais |
author |
Manuli, Rômulo César |
author_facet |
Manuli, Rômulo César |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/1315697041807130 |
dc.contributor.none.fl_str_mv |
Nascimento, Ana Carolina Campana Nascimento, Moysés |
dc.contributor.author.fl_str_mv |
Manuli, Rômulo César |
dc.contributor.advisor1.fl_str_mv |
Ribeiro Júnior, José Ivo |
contributor_str_mv |
Ribeiro Júnior, José Ivo |
dc.subject.pt-BR.fl_str_mv |
Estatística matemática Análise multivariada Estatísticas - Métodos gráficos Controle de processos |
topic |
Estatística matemática Análise multivariada Estatísticas - Métodos gráficos Controle de processos Ciências Agrárias |
dc.subject.cnpq.fl_str_mv |
Ciências Agrárias |
description |
Idealizados inicialmente por Shewhart, os gráficos de controle são ferramentas utilizadas para o monitoramento de processos. Quando o objetivo é controlar várias características de um mesmo processo, é recomendável a aplicação dos gráficos de controle multivariados, ou seja, gráficos que monitorem todas essas características simultaneamente. O objetivo deste trabalho foi elaborar uma proposta de um gráfico de controle multivariado construído por meio de componentes principais, sendo esta uma técnica de análise multivariada que reduz a dimensionalidade dos dados. Os componentes principais são indicados para o controle estatístico de processos multivariados que envolvam um conjunto de dados com grande número de variáveis correlacionadas. Para tanto, foram analisados 20 cenários compostos, cada um, por mil pares de valores simulados para as duas variáveis-resposta correlacionadas com as seguintes correlações: 0,1; 0,3; 0,5; 0,7 e 0,9. Em cinco dos vinte cenários avaliados, o processo encontrava-se sob controle estatístico. Nos demais quinze cenários, o processo se encontrava fora de controle estatístico, dos quais, cinco apresentavam deslocamento na média de controle, em outros cinco os processos apresentaram aumento no desvio-padrão de controle e, por fim, os cinco restantes cenários apresentaram alterações na média de controle e no desvio-padrão de controle, simultaneamente. Para o total dos vinte cenários, foram construídos gráficos de controle empregando a matriz de variâncias e covariâncias (sΣ), onde os 2 elementos são as variâncias de controle ( σ 01 e σ 02 ) e as covariâncias estipuladas para o estudo, a matriz de correlações (ρ), onde os elementos são obtidos a partir da matriz de variâncias e covariâncias (Σ) e, por último, a matriz de coeficientes de variação (Σ*), realizando a transformação dos dados. Nesta transformação, os dados, após serem padronizados com média zero e variância um, têm suas variâncias ponderadas pelos respectivos coeficientes de variação (CVs). Em todas as três propostas, as probabilidades dos alarmes falsos obtidas foram constantes e iguais ao valor teórico esperado de 0,0027. As probabilidades dos alarmes verdadeiros foram baixas em todos os casos. A matriz Σ mostrou-se superior às demais nos cenários onde ocorreu o deslocamento da média e no cenário onde ocorreu o deslocamento da média e o aumento da variabilidade, simultaneamente. Já no cenário onde ocorreu somente o aumento da variabilidade, as matrizes Σ e Σ* mostraram-se exatamente iguais. As correlações existentes entre as variáveis-resposta não influenciaram nas probabilidades dos alarmes falsos e verdadeiros. Assim, quando o objetivo do controle for apontar pequenos desvios na média de controle ou pequenos aumentos na variabilidade, nenhuma das três propostas são indicadas, pois não são poderosas para apontar pequenas oscilações do processo. Uma alternativa para aumentar o poder no apontamento destas pequenas oscilações é plotar esta nova variável criada em outros gráficos de controle, como EWMA e CUSUM, por exemplo. Esta nova variável é uma combinação das variáveis-resposta e pode ser plotada em outros gráficos univariados. |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-10-16T14:54:34Z |
dc.date.available.fl_str_mv |
2015-10-16T14:54:34Z |
dc.date.issued.fl_str_mv |
2015-02-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MANULI, Rômulo César. Uma proposta para a construção de gráficos de controle por meio de componentes principais. 2015. 69 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015. |
dc.identifier.uri.fl_str_mv |
http://www.locus.ufv.br/handle/123456789/6292 |
identifier_str_mv |
MANULI, Rômulo César. Uma proposta para a construção de gráficos de controle por meio de componentes principais. 2015. 69 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015. |
url |
http://www.locus.ufv.br/handle/123456789/6292 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/6292/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/6292/2/license.txt https://locus.ufv.br//bitstream/123456789/6292/3/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/6292/4/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
ef765e0f1c0cddd70cfd9e607ad0bc2e 8a4605be74aa9ea9d79846c1fba20a33 0235c2028936a23574f81b230b1aa452 4d63fe950bcc2639c1dd8918249847cf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212904754642944 |