Strategies for within-litter selection of piglets using ultra-low density SNP panels

Detalhes bibliográficos
Autor(a) principal: Oliveira, Hinayah Rojas de
Data de Publicação: 2019
Outros Autores: Cruz, Valdecy Aparecida Rocha da, Brito, Luiz F., Schenkel, Flávio S., Jafarikia, Mohsen, Feng, Zeny
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.livsci.2018.12.027
http://www.locus.ufv.br/handle/123456789/23945
Resumo: Genotyping costs and the large number of selection candidates are major factors that inhibit the application of genomic selection in the swine industry and other small-sized livestock species. In order to reduce genotyping costs and increase the uptake of genomic selection, a possible strategy is to genotype animals with an affordable low-density (LD) SNP panel and, then accurately impute the LD panel to a high-density (HD) SNP panel. For within-litter piglet selection, genotyping all piglets from all farrows using the commercially available SNP chips is still cost prohibitive. Consequently, genomic evaluation is limited in this stage and genotypic and phenotypic data from all piglets in a litter are rarely available. This study investigates the feasibility of implementing genomic selection for within-litter piglet selection, using a total of nine simulated LD panels: from the “ultra” low (300–3000 SNP markers) to moderately low (6000–10, 000 SNP markers). For each LD panel, the performance of the genomic predictions according to the accuracy of genotype imputation, the accuracy of the genomic estimated breeding values (GEBV) based on the imputed data, and distribution of the correctly selected animals within litter was evaluated and compared to using the simulated HD panel (60,000 SNP) and True Breeding Values (TBVs). In this simulation study, we considered three economically important traits: back fat thickness (BF), growth rate of age to 100 Kg (GR), and litter size (LS). For the LD panel sizes ranging from 300 to 10,000, the accuracy of imputation (measured as concordance rate) ranged from 73.20 to 99.81%; and the mean proportion of the correctly selected top rank animals within litter ranged from 55 to 98%. Based on the trade-off between panel size and genomic selection accuracy, the use of a LD panel containing 1500 SNPs might be recommended, as this panel yielded more than 85% correctly selected animals within-litter based on all three traits.
id UFV_5120af55be98d94f73270e893a9a86d1
oai_identifier_str oai:locus.ufv.br:123456789/23945
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Oliveira, Hinayah Rojas deCruz, Valdecy Aparecida Rocha daBrito, Luiz F.Schenkel, Flávio S.Jafarikia, MohsenFeng, Zeny2019-03-14T17:41:07Z2019-03-14T17:41:07Z2019-021871-1413https://doi.org/10.1016/j.livsci.2018.12.027http://www.locus.ufv.br/handle/123456789/23945Genotyping costs and the large number of selection candidates are major factors that inhibit the application of genomic selection in the swine industry and other small-sized livestock species. In order to reduce genotyping costs and increase the uptake of genomic selection, a possible strategy is to genotype animals with an affordable low-density (LD) SNP panel and, then accurately impute the LD panel to a high-density (HD) SNP panel. For within-litter piglet selection, genotyping all piglets from all farrows using the commercially available SNP chips is still cost prohibitive. Consequently, genomic evaluation is limited in this stage and genotypic and phenotypic data from all piglets in a litter are rarely available. This study investigates the feasibility of implementing genomic selection for within-litter piglet selection, using a total of nine simulated LD panels: from the “ultra” low (300–3000 SNP markers) to moderately low (6000–10, 000 SNP markers). For each LD panel, the performance of the genomic predictions according to the accuracy of genotype imputation, the accuracy of the genomic estimated breeding values (GEBV) based on the imputed data, and distribution of the correctly selected animals within litter was evaluated and compared to using the simulated HD panel (60,000 SNP) and True Breeding Values (TBVs). In this simulation study, we considered three economically important traits: back fat thickness (BF), growth rate of age to 100 Kg (GR), and litter size (LS). For the LD panel sizes ranging from 300 to 10,000, the accuracy of imputation (measured as concordance rate) ranged from 73.20 to 99.81%; and the mean proportion of the correctly selected top rank animals within litter ranged from 55 to 98%. Based on the trade-off between panel size and genomic selection accuracy, the use of a LD panel containing 1500 SNPs might be recommended, as this panel yielded more than 85% correctly selected animals within-litter based on all three traits.engLivestock ScienceVolume 220, Pages 173-179, February 2019Elsevier B. V.info:eu-repo/semantics/openAccessImputation accuracyWithin-litter selectionGenomic selectionLow-density SNP panelSwine geneticsStrategies for within-litter selection of piglets using ultra-low density SNP panelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf2576892https://locus.ufv.br//bitstream/123456789/23945/1/artigo.pdfd4cabd3ba363526f805a3a55f2443a7bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23945/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/239452019-03-14 14:54:11.23oai:locus.ufv.br:123456789/23945Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-03-14T17:54:11LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Strategies for within-litter selection of piglets using ultra-low density SNP panels
title Strategies for within-litter selection of piglets using ultra-low density SNP panels
spellingShingle Strategies for within-litter selection of piglets using ultra-low density SNP panels
Oliveira, Hinayah Rojas de
Imputation accuracy
Within-litter selection
Genomic selection
Low-density SNP panel
Swine genetics
title_short Strategies for within-litter selection of piglets using ultra-low density SNP panels
title_full Strategies for within-litter selection of piglets using ultra-low density SNP panels
title_fullStr Strategies for within-litter selection of piglets using ultra-low density SNP panels
title_full_unstemmed Strategies for within-litter selection of piglets using ultra-low density SNP panels
title_sort Strategies for within-litter selection of piglets using ultra-low density SNP panels
author Oliveira, Hinayah Rojas de
author_facet Oliveira, Hinayah Rojas de
Cruz, Valdecy Aparecida Rocha da
Brito, Luiz F.
Schenkel, Flávio S.
Jafarikia, Mohsen
Feng, Zeny
author_role author
author2 Cruz, Valdecy Aparecida Rocha da
Brito, Luiz F.
Schenkel, Flávio S.
Jafarikia, Mohsen
Feng, Zeny
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Oliveira, Hinayah Rojas de
Cruz, Valdecy Aparecida Rocha da
Brito, Luiz F.
Schenkel, Flávio S.
Jafarikia, Mohsen
Feng, Zeny
dc.subject.pt-BR.fl_str_mv Imputation accuracy
Within-litter selection
Genomic selection
Low-density SNP panel
Swine genetics
topic Imputation accuracy
Within-litter selection
Genomic selection
Low-density SNP panel
Swine genetics
description Genotyping costs and the large number of selection candidates are major factors that inhibit the application of genomic selection in the swine industry and other small-sized livestock species. In order to reduce genotyping costs and increase the uptake of genomic selection, a possible strategy is to genotype animals with an affordable low-density (LD) SNP panel and, then accurately impute the LD panel to a high-density (HD) SNP panel. For within-litter piglet selection, genotyping all piglets from all farrows using the commercially available SNP chips is still cost prohibitive. Consequently, genomic evaluation is limited in this stage and genotypic and phenotypic data from all piglets in a litter are rarely available. This study investigates the feasibility of implementing genomic selection for within-litter piglet selection, using a total of nine simulated LD panels: from the “ultra” low (300–3000 SNP markers) to moderately low (6000–10, 000 SNP markers). For each LD panel, the performance of the genomic predictions according to the accuracy of genotype imputation, the accuracy of the genomic estimated breeding values (GEBV) based on the imputed data, and distribution of the correctly selected animals within litter was evaluated and compared to using the simulated HD panel (60,000 SNP) and True Breeding Values (TBVs). In this simulation study, we considered three economically important traits: back fat thickness (BF), growth rate of age to 100 Kg (GR), and litter size (LS). For the LD panel sizes ranging from 300 to 10,000, the accuracy of imputation (measured as concordance rate) ranged from 73.20 to 99.81%; and the mean proportion of the correctly selected top rank animals within litter ranged from 55 to 98%. Based on the trade-off between panel size and genomic selection accuracy, the use of a LD panel containing 1500 SNPs might be recommended, as this panel yielded more than 85% correctly selected animals within-litter based on all three traits.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-14T17:41:07Z
dc.date.available.fl_str_mv 2019-03-14T17:41:07Z
dc.date.issued.fl_str_mv 2019-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.livsci.2018.12.027
http://www.locus.ufv.br/handle/123456789/23945
dc.identifier.issn.none.fl_str_mv 1871-1413
identifier_str_mv 1871-1413
url https://doi.org/10.1016/j.livsci.2018.12.027
http://www.locus.ufv.br/handle/123456789/23945
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 220, Pages 173-179, February 2019
dc.rights.driver.fl_str_mv Elsevier B. V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B. V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Livestock Science
publisher.none.fl_str_mv Livestock Science
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/23945/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/23945/2/license.txt
bitstream.checksum.fl_str_mv d4cabd3ba363526f805a3a55f2443a7b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212863619006464